mirror of
1
Fork 0
forgejo/vendor/github.com/caddyserver/certmagic/solvers.go

684 lines
22 KiB
Go
Raw Normal View History

// Copyright 2015 Matthew Holt
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package certmagic
import (
"context"
"crypto/tls"
"encoding/json"
"fmt"
"log"
"net"
"net/http"
"path"
"runtime"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/libdns/libdns"
"github.com/mholt/acmez"
"github.com/mholt/acmez/acme"
)
// httpSolver solves the HTTP challenge. It must be
// associated with a config and an address to use
// for solving the challenge. If multiple httpSolvers
// are initialized concurrently, the first one to
// begin will start the server, and the last one to
// finish will stop the server. This solver must be
// wrapped by a distributedSolver to work properly,
// because the only way the HTTP challenge handler
// can access the keyAuth material is by loading it
// from storage, which is done by distributedSolver.
type httpSolver struct {
closed int32 // accessed atomically
acmeManager *ACMEManager
address string
}
// Present starts an HTTP server if none is already listening on s.address.
func (s *httpSolver) Present(ctx context.Context, _ acme.Challenge) error {
solversMu.Lock()
defer solversMu.Unlock()
si := getSolverInfo(s.address)
si.count++
if si.listener != nil {
return nil // already be served by us
}
// notice the unusual error handling here; we
// only continue to start a challenge server if
// we got a listener; in all other cases return
ln, err := robustTryListen(s.address)
if ln == nil {
return err
}
// successfully bound socket, so save listener and start key auth HTTP server
si.listener = ln
go s.serve(si)
return nil
}
// serve is an HTTP server that serves only HTTP challenge responses.
func (s *httpSolver) serve(si *solverInfo) {
defer func() {
if err := recover(); err != nil {
buf := make([]byte, stackTraceBufferSize)
buf = buf[:runtime.Stack(buf, false)]
log.Printf("panic: http solver server: %v\n%s", err, buf)
}
}()
defer close(si.done)
httpServer := &http.Server{Handler: s.acmeManager.HTTPChallengeHandler(http.NewServeMux())}
httpServer.SetKeepAlivesEnabled(false)
err := httpServer.Serve(si.listener)
if err != nil && atomic.LoadInt32(&s.closed) != 1 {
log.Printf("[ERROR] key auth HTTP server: %v", err)
}
}
// CleanUp cleans up the HTTP server if it is the last one to finish.
func (s *httpSolver) CleanUp(ctx context.Context, _ acme.Challenge) error {
solversMu.Lock()
defer solversMu.Unlock()
si := getSolverInfo(s.address)
si.count--
if si.count == 0 {
// last one out turns off the lights
atomic.StoreInt32(&s.closed, 1)
if si.listener != nil {
si.listener.Close()
<-si.done
}
delete(solvers, s.address)
}
return nil
}
// tlsALPNSolver is a type that can solve TLS-ALPN challenges.
// It must have an associated config and address on which to
// serve the challenge.
type tlsALPNSolver struct {
config *Config
address string
}
// Present adds the certificate to the certificate cache and, if
// needed, starts a TLS server for answering TLS-ALPN challenges.
func (s *tlsALPNSolver) Present(ctx context.Context, chal acme.Challenge) error {
// we pre-generate the certificate for efficiency with multi-perspective
// validation, so it only has to be done once (at least, by this instance;
// distributed solving does not have that luxury, oh well) - update the
// challenge data in memory to be the generated certificate
cert, err := acmez.TLSALPN01ChallengeCert(chal)
if err != nil {
return err
}
activeChallengesMu.Lock()
chalData := activeChallenges[chal.Identifier.Value]
chalData.data = cert
activeChallenges[chal.Identifier.Value] = chalData
activeChallengesMu.Unlock()
// the rest of this function increments the
// challenge count for the solver at this
// listener address, and if necessary, starts
// a simple TLS server
solversMu.Lock()
defer solversMu.Unlock()
si := getSolverInfo(s.address)
si.count++
if si.listener != nil {
return nil // already be served by us
}
// notice the unusual error handling here; we
// only continue to start a challenge server if
// we got a listener; in all other cases return
ln, err := robustTryListen(s.address)
if ln == nil {
return err
}
// we were able to bind the socket, so make it into a TLS
// listener, store it with the solverInfo, and start the
// challenge server
si.listener = tls.NewListener(ln, s.config.TLSConfig())
go func() {
defer func() {
if err := recover(); err != nil {
buf := make([]byte, stackTraceBufferSize)
buf = buf[:runtime.Stack(buf, false)]
log.Printf("panic: tls-alpn solver server: %v\n%s", err, buf)
}
}()
defer close(si.done)
for {
conn, err := si.listener.Accept()
if err != nil {
if atomic.LoadInt32(&si.closed) == 1 {
return
}
log.Printf("[ERROR] TLS-ALPN challenge server: accept: %v", err)
continue
}
go s.handleConn(conn)
}
}()
return nil
}
// handleConn completes the TLS handshake and then closes conn.
func (*tlsALPNSolver) handleConn(conn net.Conn) {
defer func() {
if err := recover(); err != nil {
buf := make([]byte, stackTraceBufferSize)
buf = buf[:runtime.Stack(buf, false)]
log.Printf("panic: tls-alpn solver handler: %v\n%s", err, buf)
}
}()
defer conn.Close()
tlsConn, ok := conn.(*tls.Conn)
if !ok {
log.Printf("[ERROR] TLS-ALPN challenge server: expected tls.Conn but got %T: %#v", conn, conn)
return
}
err := tlsConn.Handshake()
if err != nil {
log.Printf("[ERROR] TLS-ALPN challenge server: handshake: %v", err)
return
}
}
// CleanUp removes the challenge certificate from the cache, and if
// it is the last one to finish, stops the TLS server.
func (s *tlsALPNSolver) CleanUp(ctx context.Context, chal acme.Challenge) error {
s.config.certCache.mu.Lock()
delete(s.config.certCache.cache, tlsALPNCertKeyName(chal.Identifier.Value))
s.config.certCache.mu.Unlock()
solversMu.Lock()
defer solversMu.Unlock()
si := getSolverInfo(s.address)
si.count--
if si.count == 0 {
// last one out turns off the lights
atomic.StoreInt32(&si.closed, 1)
if si.listener != nil {
si.listener.Close()
<-si.done
}
delete(solvers, s.address)
}
return nil
}
// tlsALPNCertKeyName returns the key to use when caching a cert
// for use with the TLS-ALPN ACME challenge. It is simply to help
// avoid conflicts (although at time of writing, there shouldn't
// be, since the cert cache is keyed by hash of certificate chain).
func tlsALPNCertKeyName(sniName string) string {
return sniName + ":acme-tls-alpn"
}
// DNS01Solver is a type that makes libdns providers usable
// as ACME dns-01 challenge solvers.
// See https://github.com/libdns/libdns
type DNS01Solver struct {
// The implementation that interacts with the DNS
// provider to set or delete records. (REQUIRED)
DNSProvider ACMEDNSProvider
// The TTL for the temporary challenge records.
TTL time.Duration
// Maximum time to wait for temporary record to appear.
PropagationTimeout time.Duration
// Preferred DNS resolver(s) to use when doing DNS lookups.
Resolvers []string
txtRecords map[string]dnsPresentMemory // keyed by domain name
txtRecordsMu sync.Mutex
}
// Present creates the DNS TXT record for the given ACME challenge.
func (s *DNS01Solver) Present(ctx context.Context, challenge acme.Challenge) error {
dnsName := challenge.DNS01TXTRecordName()
keyAuth := challenge.DNS01KeyAuthorization()
// multiple identifiers can have the same ACME challenge
// domain (e.g. example.com and *.example.com) so we need
// to ensure that we don't solve those concurrently and
// step on each challenges' metaphorical toes; see
// https://github.com/caddyserver/caddy/issues/3474
activeDNSChallenges.Lock(dnsName)
zone, err := findZoneByFQDN(dnsName, recursiveNameservers(s.Resolvers))
if err != nil {
return fmt.Errorf("could not determine zone for domain %q: %v", dnsName, err)
}
rec := libdns.Record{
Type: "TXT",
Name: libdns.RelativeName(dnsName+".", zone),
Value: keyAuth,
TTL: s.TTL,
}
results, err := s.DNSProvider.AppendRecords(ctx, zone, []libdns.Record{rec})
if err != nil {
return fmt.Errorf("adding temporary record for zone %s: %w", zone, err)
}
if len(results) != 1 {
return fmt.Errorf("expected one record, got %d: %v", len(results), results)
}
// remember the record and zone we got so we can clean up more efficiently
s.txtRecordsMu.Lock()
if s.txtRecords == nil {
s.txtRecords = make(map[string]dnsPresentMemory)
}
s.txtRecords[dnsName] = dnsPresentMemory{dnsZone: zone, rec: results[0]}
s.txtRecordsMu.Unlock()
return nil
}
// Wait blocks until the TXT record created in Present() appears in
// authoritative lookups, i.e. until it has propagated, or until
// timeout, whichever is first.
func (s *DNS01Solver) Wait(ctx context.Context, challenge acme.Challenge) error {
dnsName := challenge.DNS01TXTRecordName()
keyAuth := challenge.DNS01KeyAuthorization()
timeout := s.PropagationTimeout
if timeout == 0 {
timeout = 2 * time.Minute
}
const interval = 2 * time.Second
resolvers := recursiveNameservers(s.Resolvers)
var err error
start := time.Now()
for time.Since(start) < timeout {
select {
case <-time.After(interval):
case <-ctx.Done():
return ctx.Err()
}
var ready bool
ready, err = checkDNSPropagation(dnsName, keyAuth, resolvers)
if err != nil {
return fmt.Errorf("checking DNS propagation of %s: %w", dnsName, err)
}
if ready {
return nil
}
}
return fmt.Errorf("timed out waiting for record to fully propagate; verify DNS provider configuration is correct - last error: %v", err)
}
// CleanUp deletes the DNS TXT record created in Present().
func (s *DNS01Solver) CleanUp(ctx context.Context, challenge acme.Challenge) error {
dnsName := challenge.DNS01TXTRecordName()
defer func() {
// always forget about it so we don't leak memory
s.txtRecordsMu.Lock()
delete(s.txtRecords, dnsName)
s.txtRecordsMu.Unlock()
// always do this last - but always do it!
activeDNSChallenges.Unlock(dnsName)
}()
// recall the record we created and zone we looked up
s.txtRecordsMu.Lock()
memory, ok := s.txtRecords[dnsName]
if !ok {
s.txtRecordsMu.Unlock()
return fmt.Errorf("no memory of presenting a DNS record for %s (probably OK if presenting failed)", challenge.Identifier.Value)
}
s.txtRecordsMu.Unlock()
// clean up the record
_, err := s.DNSProvider.DeleteRecords(ctx, memory.dnsZone, []libdns.Record{memory.rec})
if err != nil {
return fmt.Errorf("deleting temporary record for zone %s: %w", memory.dnsZone, err)
}
return nil
}
type dnsPresentMemory struct {
dnsZone string
rec libdns.Record
}
// ACMEDNSProvider defines the set of operations required for
// ACME challenges. A DNS provider must be able to append and
// delete records in order to solve ACME challenges. Find one
// you can use at https://github.com/libdns. If your provider
// isn't implemented yet, feel free to contribute!
type ACMEDNSProvider interface {
libdns.RecordAppender
libdns.RecordDeleter
}
// activeDNSChallenges synchronizes DNS challenges for
// names to ensure that challenges for the same ACME
// DNS name do not overlap; for example, the TXT record
// to make for both example.com and *.example.com are
// the same; thus we cannot solve them concurrently.
var activeDNSChallenges = newMapMutex()
// mapMutex implements named mutexes.
type mapMutex struct {
cond *sync.Cond
set map[interface{}]struct{}
}
func newMapMutex() *mapMutex {
return &mapMutex{
cond: sync.NewCond(new(sync.Mutex)),
set: make(map[interface{}]struct{}),
}
}
func (mmu *mapMutex) Lock(key interface{}) {
mmu.cond.L.Lock()
defer mmu.cond.L.Unlock()
for mmu.locked(key) {
mmu.cond.Wait()
}
mmu.set[key] = struct{}{}
}
func (mmu *mapMutex) Unlock(key interface{}) {
mmu.cond.L.Lock()
defer mmu.cond.L.Unlock()
delete(mmu.set, key)
mmu.cond.Broadcast()
}
func (mmu *mapMutex) locked(key interface{}) (ok bool) {
_, ok = mmu.set[key]
return
}
// distributedSolver allows the ACME HTTP-01 and TLS-ALPN challenges
// to be solved by an instance other than the one which initiated it.
// This is useful behind load balancers or in other cluster/fleet
// configurations. The only requirement is that the instance which
// initiates the challenge shares the same storage and locker with
// the others in the cluster. The storage backing the certificate
// cache in distributedSolver.config is crucial.
//
// Obviously, the instance which completes the challenge must be
// serving on the HTTPChallengePort for the HTTP-01 challenge or the
// TLSALPNChallengePort for the TLS-ALPN-01 challenge (or have all
// the packets port-forwarded) to receive and handle the request. The
// server which receives the challenge must handle it by checking to
// see if the challenge token exists in storage, and if so, decode it
// and use it to serve up the correct response. HTTPChallengeHandler
// in this package as well as the GetCertificate method implemented
// by a Config support and even require this behavior.
//
// In short: the only two requirements for cluster operation are
// sharing sync and storage, and using the facilities provided by
// this package for solving the challenges.
type distributedSolver struct {
// The storage backing the distributed solver. It must be
// the same storage configuration as what is solving the
// challenge in order to be effective.
storage Storage
// The storage key prefix, associated with the issuer
// that is solving the challenge.
storageKeyIssuerPrefix string
// Since the distributedSolver is only a
// wrapper over an actual solver, place
// the actual solver here.
solver acmez.Solver
}
// Present invokes the underlying solver's Present method
// and also stores domain, token, and keyAuth to the storage
// backing the certificate cache of dhs.acmeManager.
func (dhs distributedSolver) Present(ctx context.Context, chal acme.Challenge) error {
infoBytes, err := json.Marshal(chal)
if err != nil {
return err
}
err = dhs.storage.Store(dhs.challengeTokensKey(chal.Identifier.Value), infoBytes)
if err != nil {
return err
}
err = dhs.solver.Present(ctx, chal)
if err != nil {
return fmt.Errorf("presenting with embedded solver: %v", err)
}
return nil
}
// Wait wraps the underlying solver's Wait() method, if any. Implements acmez.Waiter.
func (dhs distributedSolver) Wait(ctx context.Context, challenge acme.Challenge) error {
if waiter, ok := dhs.solver.(acmez.Waiter); ok {
return waiter.Wait(ctx, challenge)
}
return nil
}
// CleanUp invokes the underlying solver's CleanUp method
// and also cleans up any assets saved to storage.
func (dhs distributedSolver) CleanUp(ctx context.Context, chal acme.Challenge) error {
err := dhs.storage.Delete(dhs.challengeTokensKey(chal.Identifier.Value))
if err != nil {
return err
}
err = dhs.solver.CleanUp(ctx, chal)
if err != nil {
return fmt.Errorf("cleaning up embedded provider: %v", err)
}
return nil
}
// challengeTokensPrefix returns the key prefix for challenge info.
func (dhs distributedSolver) challengeTokensPrefix() string {
return path.Join(dhs.storageKeyIssuerPrefix, "challenge_tokens")
}
// challengeTokensKey returns the key to use to store and access
// challenge info for domain.
func (dhs distributedSolver) challengeTokensKey(domain string) string {
return path.Join(dhs.challengeTokensPrefix(), StorageKeys.Safe(domain)+".json")
}
// solverInfo associates a listener with the
// number of challenges currently using it.
type solverInfo struct {
closed int32 // accessed atomically
count int
listener net.Listener
done chan struct{} // used to signal when our own solver server is done
}
// getSolverInfo gets a valid solverInfo struct for address.
func getSolverInfo(address string) *solverInfo {
si, ok := solvers[address]
if !ok {
si = &solverInfo{done: make(chan struct{})}
solvers[address] = si
}
return si
}
// robustTryListen calls net.Listen for a TCP socket at addr.
// This function may return both a nil listener and a nil error!
// If it was able to bind the socket, it returns the listener
// and no error. If it wasn't able to bind the socket because
// the socket is already in use, then it returns a nil listener
// and nil error. If it had any other error, it returns the
// error. The intended error handling logic for this function
// is to proceed if the returned listener is not nil; otherwise
// return err (which may also be nil). In other words, this
// function ignores errors if the socket is already in use,
// which is useful for our challenge servers, where we assume
// that whatever is already listening can solve the challenges.
func robustTryListen(addr string) (net.Listener, error) {
var listenErr error
for i := 0; i < 2; i++ {
// doesn't hurt to sleep briefly before the second
// attempt in case the OS has timing issues
if i > 0 {
time.Sleep(100 * time.Millisecond)
}
// if we can bind the socket right away, great!
var ln net.Listener
ln, listenErr = net.Listen("tcp", addr)
if listenErr == nil {
return ln, nil
}
// if it failed just because the socket is already in use, we
// have no choice but to assume that whatever is using the socket
// can answer the challenge already, so we ignore the error
connectErr := dialTCPSocket(addr)
if connectErr == nil {
return nil, nil
}
// hmm, we couldn't connect to the socket, so something else must
// be wrong, right? wrong!! we've had reports across multiple OSes
// now that sometimes connections fail even though the OS told us
// that the address was already in use; either the listener is
// fluctuating between open and closed very, very quickly, or the
// OS is inconsistent and contradicting itself; I have been unable
// to reproduce this, so I'm now resorting to hard-coding substring
// matching in error messages as a really hacky and unreliable
// safeguard against this, until we can idenify exactly what was
// happening; see the following threads for more info:
// https://caddy.community/t/caddy-retry-error/7317
// https://caddy.community/t/v2-upgrade-to-caddy2-failing-with-errors/7423
if strings.Contains(listenErr.Error(), "address already in use") ||
strings.Contains(listenErr.Error(), "one usage of each socket address") {
log.Printf("[WARNING] OS reports a contradiction: %v - but we cannot connect to it, with this error: %v; continuing anyway 🤞 (I don't know what causes this... if you do, please help?)", listenErr, connectErr)
return nil, nil
}
}
return nil, fmt.Errorf("could not start listener for challenge server at %s: %v", addr, listenErr)
}
// dialTCPSocket connects to a TCP address just for the sake of
// seeing if it is open. It returns a nil error if a TCP connection
// can successfully be made to addr within a short timeout.
func dialTCPSocket(addr string) error {
conn, err := net.DialTimeout("tcp", addr, 250*time.Millisecond)
if err == nil {
conn.Close()
}
return err
}
// GetACMEChallenge returns an active ACME challenge for the given identifier,
// or false if no active challenge for that identifier is known.
func GetACMEChallenge(identifier string) (Challenge, bool) {
activeChallengesMu.Lock()
chalData, ok := activeChallenges[identifier]
activeChallengesMu.Unlock()
return chalData, ok
}
// The active challenge solvers, keyed by listener address,
// and protected by a mutex. Note that the creation of
// solver listeners and the incrementing of their counts
// are atomic operations guarded by this mutex.
var (
solvers = make(map[string]*solverInfo)
solversMu sync.Mutex
)
// activeChallenges holds information about all known, currently-active
// ACME challenges, keyed by identifier. CertMagic guarantees that
// challenges for the same identifier do not overlap, by its locking
// mechanisms; thus if a challenge comes in for a certain identifier,
// we can be confident that if this process initiated the challenge,
// the correct information to solve it is in this map. (It may have
// alternatively been initiated by another instance in a cluster, in
// which case the distributed solver will take care of that.)
var (
activeChallenges = make(map[string]Challenge)
activeChallengesMu sync.Mutex
)
// Challenge is an ACME challenge, but optionally paired with
// data that can make it easier or more efficient to solve.
type Challenge struct {
acme.Challenge
data interface{}
}
// solverWrapper should be used to wrap all challenge solvers so that
// we can add the challenge info to memory; this makes challenges globally
// solvable by a single HTTP or TLS server even if multiple servers with
// different configurations/scopes need to get certificates.
type solverWrapper struct{ acmez.Solver }
func (sw solverWrapper) Present(ctx context.Context, chal acme.Challenge) error {
activeChallengesMu.Lock()
activeChallenges[chal.Identifier.Value] = Challenge{Challenge: chal}
activeChallengesMu.Unlock()
return sw.Solver.Present(ctx, chal)
}
func (sw solverWrapper) Wait(ctx context.Context, chal acme.Challenge) error {
if waiter, ok := sw.Solver.(acmez.Waiter); ok {
return waiter.Wait(ctx, chal)
}
return nil
}
func (sw solverWrapper) CleanUp(ctx context.Context, chal acme.Challenge) error {
activeChallengesMu.Lock()
delete(activeChallenges, chal.Identifier.Value)
activeChallengesMu.Unlock()
return sw.Solver.CleanUp(ctx, chal)
}
// Interface guards
var (
_ acmez.Solver = (*solverWrapper)(nil)
_ acmez.Waiter = (*solverWrapper)(nil)
_ acmez.Waiter = (*distributedSolver)(nil)
)