mirror of
1
Fork 0
forgejo/vendor/github.com/mholt/acmez/acme/jws.go

264 lines
7.9 KiB
Go

// Copyright 2020 Matthew Holt
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// --- ORIGINAL LICENSE ---
//
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the THIRD-PARTY file.
//
// (This file has been modified from its original contents.)
// (And it has dragons. Don't wake the dragons.)
package acme
import (
"crypto"
"crypto/ecdsa"
"crypto/hmac"
"crypto/rand"
"crypto/rsa"
"crypto/sha256"
_ "crypto/sha512" // need for EC keys
"encoding/base64"
"encoding/json"
"fmt"
"math/big"
)
var errUnsupportedKey = fmt.Errorf("unknown key type; only RSA and ECDSA are supported")
// keyID is the account identity provided by a CA during registration.
type keyID string
// noKeyID indicates that jwsEncodeJSON should compute and use JWK instead of a KID.
// See jwsEncodeJSON for details.
const noKeyID = keyID("")
// // noPayload indicates jwsEncodeJSON will encode zero-length octet string
// // in a JWS request. This is called POST-as-GET in RFC 8555 and is used to make
// // authenticated GET requests via POSTing with an empty payload.
// // See https://tools.ietf.org/html/rfc8555#section-6.3 for more details.
// const noPayload = ""
// jwsEncodeEAB creates a JWS payload for External Account Binding according to RFC 8555 §7.3.4.
func jwsEncodeEAB(accountKey crypto.PublicKey, hmacKey []byte, kid keyID, url string) ([]byte, error) {
// §7.3.4: "The 'alg' field MUST indicate a MAC-based algorithm"
alg, sha := "HS256", crypto.SHA256
// §7.3.4: "The 'nonce' field MUST NOT be present"
phead, err := jwsHead(alg, "", url, kid, nil)
if err != nil {
return nil, err
}
encodedKey, err := jwkEncode(accountKey)
if err != nil {
return nil, err
}
payload := base64.RawURLEncoding.EncodeToString([]byte(encodedKey))
payloadToSign := []byte(phead + "." + payload)
h := hmac.New(sha256.New, hmacKey)
h.Write(payloadToSign)
sig := h.Sum(nil)
return jwsFinal(sha, sig, phead, payload)
}
// jwsEncodeJSON signs claimset using provided key and a nonce.
// The result is serialized in JSON format containing either kid or jwk
// fields based on the provided keyID value.
//
// If kid is non-empty, its quoted value is inserted in the protected head
// as "kid" field value. Otherwise, JWK is computed using jwkEncode and inserted
// as "jwk" field value. The "jwk" and "kid" fields are mutually exclusive.
//
// See https://tools.ietf.org/html/rfc7515#section-7.
//
// If nonce is empty, it will not be encoded into the header.
func jwsEncodeJSON(claimset interface{}, key crypto.Signer, kid keyID, nonce, url string) ([]byte, error) {
alg, sha := jwsHasher(key.Public())
if alg == "" || !sha.Available() {
return nil, errUnsupportedKey
}
phead, err := jwsHead(alg, nonce, url, kid, key)
if err != nil {
return nil, err
}
var payload string
if claimset != nil {
cs, err := json.Marshal(claimset)
if err != nil {
return nil, err
}
payload = base64.RawURLEncoding.EncodeToString(cs)
}
payloadToSign := []byte(phead + "." + payload)
hash := sha.New()
_, _ = hash.Write(payloadToSign)
digest := hash.Sum(nil)
sig, err := jwsSign(key, sha, digest)
if err != nil {
return nil, err
}
return jwsFinal(sha, sig, phead, payload)
}
// jwkEncode encodes public part of an RSA or ECDSA key into a JWK.
// The result is also suitable for creating a JWK thumbprint.
// https://tools.ietf.org/html/rfc7517
func jwkEncode(pub crypto.PublicKey) (string, error) {
switch pub := pub.(type) {
case *rsa.PublicKey:
// https://tools.ietf.org/html/rfc7518#section-6.3.1
n := pub.N
e := big.NewInt(int64(pub.E))
// Field order is important.
// See https://tools.ietf.org/html/rfc7638#section-3.3 for details.
return fmt.Sprintf(`{"e":"%s","kty":"RSA","n":"%s"}`,
base64.RawURLEncoding.EncodeToString(e.Bytes()),
base64.RawURLEncoding.EncodeToString(n.Bytes()),
), nil
case *ecdsa.PublicKey:
// https://tools.ietf.org/html/rfc7518#section-6.2.1
p := pub.Curve.Params()
n := p.BitSize / 8
if p.BitSize%8 != 0 {
n++
}
x := pub.X.Bytes()
if n > len(x) {
x = append(make([]byte, n-len(x)), x...)
}
y := pub.Y.Bytes()
if n > len(y) {
y = append(make([]byte, n-len(y)), y...)
}
// Field order is important.
// See https://tools.ietf.org/html/rfc7638#section-3.3 for details.
return fmt.Sprintf(`{"crv":"%s","kty":"EC","x":"%s","y":"%s"}`,
p.Name,
base64.RawURLEncoding.EncodeToString(x),
base64.RawURLEncoding.EncodeToString(y),
), nil
}
return "", errUnsupportedKey
}
// jwsHead constructs the protected JWS header for the given fields.
// Since jwk and kid are mutually-exclusive, the jwk will be encoded
// only if kid is empty. If nonce is empty, it will not be encoded.
func jwsHead(alg, nonce, url string, kid keyID, key crypto.Signer) (string, error) {
phead := fmt.Sprintf(`{"alg":%q`, alg)
if kid == noKeyID {
jwk, err := jwkEncode(key.Public())
if err != nil {
return "", err
}
phead += fmt.Sprintf(`,"jwk":%s`, jwk)
} else {
phead += fmt.Sprintf(`,"kid":%q`, kid)
}
if nonce != "" {
phead += fmt.Sprintf(`,"nonce":%q`, nonce)
}
phead += fmt.Sprintf(`,"url":%q}`, url)
phead = base64.RawURLEncoding.EncodeToString([]byte(phead))
return phead, nil
}
// jwsFinal constructs the final JWS object.
func jwsFinal(sha crypto.Hash, sig []byte, phead, payload string) ([]byte, error) {
enc := struct {
Protected string `json:"protected"`
Payload string `json:"payload"`
Sig string `json:"signature"`
}{
Protected: phead,
Payload: payload,
Sig: base64.RawURLEncoding.EncodeToString(sig),
}
result, err := json.Marshal(&enc)
if err != nil {
return nil, err
}
return result, nil
}
// jwsSign signs the digest using the given key.
// The hash is unused for ECDSA keys.
//
// Note: non-stdlib crypto.Signer implementations are expected to return
// the signature in the format as specified in RFC7518.
// See https://tools.ietf.org/html/rfc7518 for more details.
func jwsSign(key crypto.Signer, hash crypto.Hash, digest []byte) ([]byte, error) {
if key, ok := key.(*ecdsa.PrivateKey); ok {
// The key.Sign method of ecdsa returns ASN1-encoded signature.
// So, we use the package Sign function instead
// to get R and S values directly and format the result accordingly.
r, s, err := ecdsa.Sign(rand.Reader, key, digest)
if err != nil {
return nil, err
}
rb, sb := r.Bytes(), s.Bytes()
size := key.Params().BitSize / 8
if size%8 > 0 {
size++
}
sig := make([]byte, size*2)
copy(sig[size-len(rb):], rb)
copy(sig[size*2-len(sb):], sb)
return sig, nil
}
return key.Sign(rand.Reader, digest, hash)
}
// jwsHasher indicates suitable JWS algorithm name and a hash function
// to use for signing a digest with the provided key.
// It returns ("", 0) if the key is not supported.
func jwsHasher(pub crypto.PublicKey) (string, crypto.Hash) {
switch pub := pub.(type) {
case *rsa.PublicKey:
return "RS256", crypto.SHA256
case *ecdsa.PublicKey:
switch pub.Params().Name {
case "P-256":
return "ES256", crypto.SHA256
case "P-384":
return "ES384", crypto.SHA384
case "P-521":
return "ES512", crypto.SHA512
}
}
return "", 0
}
// jwkThumbprint creates a JWK thumbprint out of pub
// as specified in https://tools.ietf.org/html/rfc7638.
func jwkThumbprint(pub crypto.PublicKey) (string, error) {
jwk, err := jwkEncode(pub)
if err != nil {
return "", err
}
b := sha256.Sum256([]byte(jwk))
return base64.RawURLEncoding.EncodeToString(b[:]), nil
}