mirror of
1
Fork 0
gotosocial/vendor/github.com/puzpuzpuz/xsync/v3/map.go

874 lines
26 KiB
Go
Raw Normal View History

package xsync
import (
"fmt"
"math"
"runtime"
"strings"
"sync"
"sync/atomic"
"unsafe"
)
type mapResizeHint int
const (
mapGrowHint mapResizeHint = 0
mapShrinkHint mapResizeHint = 1
mapClearHint mapResizeHint = 2
)
const (
// number of Map entries per bucket; 3 entries lead to size of 64B
// (one cache line) on 64-bit machines
entriesPerMapBucket = 3
// threshold fraction of table occupation to start a table shrinking
// when deleting the last entry in a bucket chain
mapShrinkFraction = 128
// map load factor to trigger a table resize during insertion;
// a map holds up to mapLoadFactor*entriesPerMapBucket*mapTableLen
// key-value pairs (this is a soft limit)
mapLoadFactor = 0.75
// minimal table size, i.e. number of buckets; thus, minimal map
// capacity can be calculated as entriesPerMapBucket*defaultMinMapTableLen
defaultMinMapTableLen = 32
// minimum counter stripes to use
minMapCounterLen = 8
// maximum counter stripes to use; stands for around 4KB of memory
maxMapCounterLen = 32
)
var (
topHashMask = uint64((1<<20)-1) << 44
topHashEntryMasks = [3]uint64{
topHashMask,
topHashMask >> 20,
topHashMask >> 40,
}
)
// Map is like a Go map[string]interface{} but is safe for concurrent
// use by multiple goroutines without additional locking or
// coordination. It follows the interface of sync.Map with
// a number of valuable extensions like Compute or Size.
//
// A Map must not be copied after first use.
//
// Map uses a modified version of Cache-Line Hash Table (CLHT)
// data structure: https://github.com/LPD-EPFL/CLHT
//
// CLHT is built around idea to organize the hash table in
// cache-line-sized buckets, so that on all modern CPUs update
// operations complete with at most one cache-line transfer.
// Also, Get operations involve no write to memory, as well as no
// mutexes or any other sort of locks. Due to this design, in all
// considered scenarios Map outperforms sync.Map.
//
// One important difference with sync.Map is that only string keys
// are supported. That's because Golang standard library does not
// expose the built-in hash functions for interface{} values.
type Map struct {
totalGrowths int64
totalShrinks int64
resizing int64 // resize in progress flag; updated atomically
resizeMu sync.Mutex // only used along with resizeCond
resizeCond sync.Cond // used to wake up resize waiters (concurrent modifications)
table unsafe.Pointer // *mapTable
minTableLen int
growOnly bool
}
type mapTable struct {
buckets []bucketPadded
// striped counter for number of table entries;
// used to determine if a table shrinking is needed
// occupies min(buckets_memory/1024, 64KB) of memory
size []counterStripe
seed uint64
}
type counterStripe struct {
c int64
//lint:ignore U1000 prevents false sharing
pad [cacheLineSize - 8]byte
}
type bucketPadded struct {
//lint:ignore U1000 ensure each bucket takes two cache lines on both 32 and 64-bit archs
pad [cacheLineSize - unsafe.Sizeof(bucket{})]byte
bucket
}
type bucket struct {
next unsafe.Pointer // *bucketPadded
keys [entriesPerMapBucket]unsafe.Pointer
values [entriesPerMapBucket]unsafe.Pointer
// topHashMutex is a 2-in-1 value.
//
// It contains packed top 20 bits (20 MSBs) of hash codes for keys
// stored in the bucket:
// | key 0's top hash | key 1's top hash | key 2's top hash | bitmap for keys | mutex |
// | 20 bits | 20 bits | 20 bits | 3 bits | 1 bit |
//
// The least significant bit is used for the mutex (TTAS spinlock).
topHashMutex uint64
}
type rangeEntry struct {
key unsafe.Pointer
value unsafe.Pointer
}
// MapConfig defines configurable Map/MapOf options.
type MapConfig struct {
sizeHint int
growOnly bool
}
// WithPresize configures new Map/MapOf instance with capacity enough
// to hold sizeHint entries. The capacity is treated as the minimal
// capacity meaning that the underlying hash table will never shrink
// to a smaller capacity. If sizeHint is zero or negative, the value
// is ignored.
func WithPresize(sizeHint int) func(*MapConfig) {
return func(c *MapConfig) {
c.sizeHint = sizeHint
}
}
// WithGrowOnly configures new Map/MapOf instance to be grow-only.
// This means that the underlying hash table grows in capacity when
// new keys are added, but does not shrink when keys are deleted.
// The only exception to this rule is the Clear method which
// shrinks the hash table back to the initial capacity.
func WithGrowOnly() func(*MapConfig) {
return func(c *MapConfig) {
c.growOnly = true
}
}
// NewMap creates a new Map instance configured with the given
// options.
func NewMap(options ...func(*MapConfig)) *Map {
c := &MapConfig{
sizeHint: defaultMinMapTableLen * entriesPerMapBucket,
}
for _, o := range options {
o(c)
}
m := &Map{}
m.resizeCond = *sync.NewCond(&m.resizeMu)
var table *mapTable
if c.sizeHint <= defaultMinMapTableLen*entriesPerMapBucket {
table = newMapTable(defaultMinMapTableLen)
} else {
tableLen := nextPowOf2(uint32((float64(c.sizeHint) / entriesPerMapBucket) / mapLoadFactor))
table = newMapTable(int(tableLen))
}
m.minTableLen = len(table.buckets)
m.growOnly = c.growOnly
atomic.StorePointer(&m.table, unsafe.Pointer(table))
return m
}
// NewMapPresized creates a new Map instance with capacity enough to hold
// sizeHint entries. The capacity is treated as the minimal capacity
// meaning that the underlying hash table will never shrink to
// a smaller capacity. If sizeHint is zero or negative, the value
// is ignored.
//
// Deprecated: use NewMap in combination with WithPresize.
func NewMapPresized(sizeHint int) *Map {
return NewMap(WithPresize(sizeHint))
}
func newMapTable(minTableLen int) *mapTable {
buckets := make([]bucketPadded, minTableLen)
counterLen := minTableLen >> 10
if counterLen < minMapCounterLen {
counterLen = minMapCounterLen
} else if counterLen > maxMapCounterLen {
counterLen = maxMapCounterLen
}
counter := make([]counterStripe, counterLen)
t := &mapTable{
buckets: buckets,
size: counter,
seed: makeSeed(),
}
return t
}
// Load returns the value stored in the map for a key, or nil if no
// value is present.
// The ok result indicates whether value was found in the map.
func (m *Map) Load(key string) (value interface{}, ok bool) {
table := (*mapTable)(atomic.LoadPointer(&m.table))
hash := hashString(key, table.seed)
bidx := uint64(len(table.buckets)-1) & hash
b := &table.buckets[bidx]
for {
topHashes := atomic.LoadUint64(&b.topHashMutex)
for i := 0; i < entriesPerMapBucket; i++ {
if !topHashMatch(hash, topHashes, i) {
continue
}
atomic_snapshot:
// Start atomic snapshot.
vp := atomic.LoadPointer(&b.values[i])
kp := atomic.LoadPointer(&b.keys[i])
if kp != nil && vp != nil {
if key == derefKey(kp) {
if uintptr(vp) == uintptr(atomic.LoadPointer(&b.values[i])) {
// Atomic snapshot succeeded.
return derefValue(vp), true
}
// Concurrent update/remove. Go for another spin.
goto atomic_snapshot
}
}
}
bptr := atomic.LoadPointer(&b.next)
if bptr == nil {
return
}
b = (*bucketPadded)(bptr)
}
}
// Store sets the value for a key.
func (m *Map) Store(key string, value interface{}) {
m.doCompute(
key,
func(interface{}, bool) (interface{}, bool) {
return value, false
},
false,
false,
)
}
// LoadOrStore returns the existing value for the key if present.
// Otherwise, it stores and returns the given value.
// The loaded result is true if the value was loaded, false if stored.
func (m *Map) LoadOrStore(key string, value interface{}) (actual interface{}, loaded bool) {
return m.doCompute(
key,
func(interface{}, bool) (interface{}, bool) {
return value, false
},
true,
false,
)
}
// LoadAndStore returns the existing value for the key if present,
// while setting the new value for the key.
// It stores the new value and returns the existing one, if present.
// The loaded result is true if the existing value was loaded,
// false otherwise.
func (m *Map) LoadAndStore(key string, value interface{}) (actual interface{}, loaded bool) {
return m.doCompute(
key,
func(interface{}, bool) (interface{}, bool) {
return value, false
},
false,
false,
)
}
// LoadOrCompute returns the existing value for the key if present.
// Otherwise, it computes the value using the provided function and
// returns the computed value. The loaded result is true if the value
// was loaded, false if stored.
//
// This call locks a hash table bucket while the compute function
// is executed. It means that modifications on other entries in
// the bucket will be blocked until the valueFn executes. Consider
// this when the function includes long-running operations.
func (m *Map) LoadOrCompute(key string, valueFn func() interface{}) (actual interface{}, loaded bool) {
return m.doCompute(
key,
func(interface{}, bool) (interface{}, bool) {
return valueFn(), false
},
true,
false,
)
}
// Compute either sets the computed new value for the key or deletes
// the value for the key. When the delete result of the valueFn function
// is set to true, the value will be deleted, if it exists. When delete
// is set to false, the value is updated to the newValue.
// The ok result indicates whether value was computed and stored, thus, is
// present in the map. The actual result contains the new value in cases where
// the value was computed and stored. See the example for a few use cases.
//
// This call locks a hash table bucket while the compute function
// is executed. It means that modifications on other entries in
// the bucket will be blocked until the valueFn executes. Consider
// this when the function includes long-running operations.
func (m *Map) Compute(
key string,
valueFn func(oldValue interface{}, loaded bool) (newValue interface{}, delete bool),
) (actual interface{}, ok bool) {
return m.doCompute(key, valueFn, false, true)
}
// LoadAndDelete deletes the value for a key, returning the previous
// value if any. The loaded result reports whether the key was
// present.
func (m *Map) LoadAndDelete(key string) (value interface{}, loaded bool) {
return m.doCompute(
key,
func(value interface{}, loaded bool) (interface{}, bool) {
return value, true
},
false,
false,
)
}
// Delete deletes the value for a key.
func (m *Map) Delete(key string) {
m.doCompute(
key,
func(value interface{}, loaded bool) (interface{}, bool) {
return value, true
},
false,
false,
)
}
func (m *Map) doCompute(
key string,
valueFn func(oldValue interface{}, loaded bool) (interface{}, bool),
loadIfExists, computeOnly bool,
) (interface{}, bool) {
// Read-only path.
if loadIfExists {
if v, ok := m.Load(key); ok {
return v, !computeOnly
}
}
// Write path.
for {
compute_attempt:
var (
emptyb *bucketPadded
emptyidx int
hintNonEmpty int
)
table := (*mapTable)(atomic.LoadPointer(&m.table))
tableLen := len(table.buckets)
hash := hashString(key, table.seed)
bidx := uint64(len(table.buckets)-1) & hash
rootb := &table.buckets[bidx]
lockBucket(&rootb.topHashMutex)
// The following two checks must go in reverse to what's
// in the resize method.
if m.resizeInProgress() {
// Resize is in progress. Wait, then go for another attempt.
unlockBucket(&rootb.topHashMutex)
m.waitForResize()
goto compute_attempt
}
if m.newerTableExists(table) {
// Someone resized the table. Go for another attempt.
unlockBucket(&rootb.topHashMutex)
goto compute_attempt
}
b := rootb
for {
topHashes := atomic.LoadUint64(&b.topHashMutex)
for i := 0; i < entriesPerMapBucket; i++ {
if b.keys[i] == nil {
if emptyb == nil {
emptyb = b
emptyidx = i
}
continue
}
if !topHashMatch(hash, topHashes, i) {
hintNonEmpty++
continue
}
if key == derefKey(b.keys[i]) {
vp := b.values[i]
if loadIfExists {
unlockBucket(&rootb.topHashMutex)
return derefValue(vp), !computeOnly
}
// In-place update/delete.
// We get a copy of the value via an interface{} on each call,
// thus the live value pointers are unique. Otherwise atomic
// snapshot won't be correct in case of multiple Store calls
// using the same value.
oldValue := derefValue(vp)
newValue, del := valueFn(oldValue, true)
if del {
// Deletion.
// First we update the value, then the key.
// This is important for atomic snapshot states.
atomic.StoreUint64(&b.topHashMutex, eraseTopHash(topHashes, i))
atomic.StorePointer(&b.values[i], nil)
atomic.StorePointer(&b.keys[i], nil)
leftEmpty := false
if hintNonEmpty == 0 {
leftEmpty = isEmptyBucket(b)
}
unlockBucket(&rootb.topHashMutex)
table.addSize(bidx, -1)
// Might need to shrink the table.
if leftEmpty {
m.resize(table, mapShrinkHint)
}
return oldValue, !computeOnly
}
nvp := unsafe.Pointer(&newValue)
if assertionsEnabled && vp == nvp {
panic("non-unique value pointer")
}
atomic.StorePointer(&b.values[i], nvp)
unlockBucket(&rootb.topHashMutex)
if computeOnly {
// Compute expects the new value to be returned.
return newValue, true
}
// LoadAndStore expects the old value to be returned.
return oldValue, true
}
hintNonEmpty++
}
if b.next == nil {
if emptyb != nil {
// Insertion into an existing bucket.
var zeroedV interface{}
newValue, del := valueFn(zeroedV, false)
if del {
unlockBucket(&rootb.topHashMutex)
return zeroedV, false
}
// First we update the value, then the key.
// This is important for atomic snapshot states.
topHashes = atomic.LoadUint64(&emptyb.topHashMutex)
atomic.StoreUint64(&emptyb.topHashMutex, storeTopHash(hash, topHashes, emptyidx))
atomic.StorePointer(&emptyb.values[emptyidx], unsafe.Pointer(&newValue))
atomic.StorePointer(&emptyb.keys[emptyidx], unsafe.Pointer(&key))
unlockBucket(&rootb.topHashMutex)
table.addSize(bidx, 1)
return newValue, computeOnly
}
growThreshold := float64(tableLen) * entriesPerMapBucket * mapLoadFactor
if table.sumSize() > int64(growThreshold) {
// Need to grow the table. Then go for another attempt.
unlockBucket(&rootb.topHashMutex)
m.resize(table, mapGrowHint)
goto compute_attempt
}
// Insertion into a new bucket.
var zeroedV interface{}
newValue, del := valueFn(zeroedV, false)
if del {
unlockBucket(&rootb.topHashMutex)
return newValue, false
}
// Create and append a bucket.
newb := new(bucketPadded)
newb.keys[0] = unsafe.Pointer(&key)
newb.values[0] = unsafe.Pointer(&newValue)
newb.topHashMutex = storeTopHash(hash, newb.topHashMutex, 0)
atomic.StorePointer(&b.next, unsafe.Pointer(newb))
unlockBucket(&rootb.topHashMutex)
table.addSize(bidx, 1)
return newValue, computeOnly
}
b = (*bucketPadded)(b.next)
}
}
}
func (m *Map) newerTableExists(table *mapTable) bool {
curTablePtr := atomic.LoadPointer(&m.table)
return uintptr(curTablePtr) != uintptr(unsafe.Pointer(table))
}
func (m *Map) resizeInProgress() bool {
return atomic.LoadInt64(&m.resizing) == 1
}
func (m *Map) waitForResize() {
m.resizeMu.Lock()
for m.resizeInProgress() {
m.resizeCond.Wait()
}
m.resizeMu.Unlock()
}
func (m *Map) resize(knownTable *mapTable, hint mapResizeHint) {
knownTableLen := len(knownTable.buckets)
// Fast path for shrink attempts.
if hint == mapShrinkHint {
if m.growOnly ||
m.minTableLen == knownTableLen ||
knownTable.sumSize() > int64((knownTableLen*entriesPerMapBucket)/mapShrinkFraction) {
return
}
}
// Slow path.
if !atomic.CompareAndSwapInt64(&m.resizing, 0, 1) {
// Someone else started resize. Wait for it to finish.
m.waitForResize()
return
}
var newTable *mapTable
table := (*mapTable)(atomic.LoadPointer(&m.table))
tableLen := len(table.buckets)
switch hint {
case mapGrowHint:
// Grow the table with factor of 2.
atomic.AddInt64(&m.totalGrowths, 1)
newTable = newMapTable(tableLen << 1)
case mapShrinkHint:
shrinkThreshold := int64((tableLen * entriesPerMapBucket) / mapShrinkFraction)
if tableLen > m.minTableLen && table.sumSize() <= shrinkThreshold {
// Shrink the table with factor of 2.
atomic.AddInt64(&m.totalShrinks, 1)
newTable = newMapTable(tableLen >> 1)
} else {
// No need to shrink. Wake up all waiters and give up.
m.resizeMu.Lock()
atomic.StoreInt64(&m.resizing, 0)
m.resizeCond.Broadcast()
m.resizeMu.Unlock()
return
}
case mapClearHint:
newTable = newMapTable(m.minTableLen)
default:
panic(fmt.Sprintf("unexpected resize hint: %d", hint))
}
// Copy the data only if we're not clearing the map.
if hint != mapClearHint {
for i := 0; i < tableLen; i++ {
copied := copyBucket(&table.buckets[i], newTable)
newTable.addSizePlain(uint64(i), copied)
}
}
// Publish the new table and wake up all waiters.
atomic.StorePointer(&m.table, unsafe.Pointer(newTable))
m.resizeMu.Lock()
atomic.StoreInt64(&m.resizing, 0)
m.resizeCond.Broadcast()
m.resizeMu.Unlock()
}
func copyBucket(b *bucketPadded, destTable *mapTable) (copied int) {
rootb := b
lockBucket(&rootb.topHashMutex)
for {
for i := 0; i < entriesPerMapBucket; i++ {
if b.keys[i] != nil {
k := derefKey(b.keys[i])
hash := hashString(k, destTable.seed)
bidx := uint64(len(destTable.buckets)-1) & hash
destb := &destTable.buckets[bidx]
appendToBucket(hash, b.keys[i], b.values[i], destb)
copied++
}
}
if b.next == nil {
unlockBucket(&rootb.topHashMutex)
return
}
b = (*bucketPadded)(b.next)
}
}
func appendToBucket(hash uint64, keyPtr, valPtr unsafe.Pointer, b *bucketPadded) {
for {
for i := 0; i < entriesPerMapBucket; i++ {
if b.keys[i] == nil {
b.keys[i] = keyPtr
b.values[i] = valPtr
b.topHashMutex = storeTopHash(hash, b.topHashMutex, i)
return
}
}
if b.next == nil {
newb := new(bucketPadded)
newb.keys[0] = keyPtr
newb.values[0] = valPtr
newb.topHashMutex = storeTopHash(hash, newb.topHashMutex, 0)
b.next = unsafe.Pointer(newb)
return
}
b = (*bucketPadded)(b.next)
}
}
func isEmptyBucket(rootb *bucketPadded) bool {
b := rootb
for {
for i := 0; i < entriesPerMapBucket; i++ {
if b.keys[i] != nil {
return false
}
}
if b.next == nil {
return true
}
b = (*bucketPadded)(b.next)
}
}
// Range calls f sequentially for each key and value present in the
// map. If f returns false, range stops the iteration.
//
// Range does not necessarily correspond to any consistent snapshot
// of the Map's contents: no key will be visited more than once, but
// if the value for any key is stored or deleted concurrently, Range
// may reflect any mapping for that key from any point during the
// Range call.
//
// It is safe to modify the map while iterating it, including entry
// creation, modification and deletion. However, the concurrent
// modification rule apply, i.e. the changes may be not reflected
// in the subsequently iterated entries.
func (m *Map) Range(f func(key string, value interface{}) bool) {
var zeroEntry rangeEntry
// Pre-allocate array big enough to fit entries for most hash tables.
bentries := make([]rangeEntry, 0, 16*entriesPerMapBucket)
tablep := atomic.LoadPointer(&m.table)
table := *(*mapTable)(tablep)
for i := range table.buckets {
rootb := &table.buckets[i]
b := rootb
// Prevent concurrent modifications and copy all entries into
// the intermediate slice.
lockBucket(&rootb.topHashMutex)
for {
for i := 0; i < entriesPerMapBucket; i++ {
if b.keys[i] != nil {
bentries = append(bentries, rangeEntry{
key: b.keys[i],
value: b.values[i],
})
}
}
if b.next == nil {
unlockBucket(&rootb.topHashMutex)
break
}
b = (*bucketPadded)(b.next)
}
// Call the function for all copied entries.
for j := range bentries {
k := derefKey(bentries[j].key)
v := derefValue(bentries[j].value)
if !f(k, v) {
return
}
// Remove the reference to avoid preventing the copied
// entries from being GCed until this method finishes.
bentries[j] = zeroEntry
}
bentries = bentries[:0]
}
}
// Clear deletes all keys and values currently stored in the map.
func (m *Map) Clear() {
table := (*mapTable)(atomic.LoadPointer(&m.table))
m.resize(table, mapClearHint)
}
// Size returns current size of the map.
func (m *Map) Size() int {
table := (*mapTable)(atomic.LoadPointer(&m.table))
return int(table.sumSize())
}
func derefKey(keyPtr unsafe.Pointer) string {
return *(*string)(keyPtr)
}
func derefValue(valuePtr unsafe.Pointer) interface{} {
return *(*interface{})(valuePtr)
}
func lockBucket(mu *uint64) {
for {
var v uint64
for {
v = atomic.LoadUint64(mu)
if v&1 != 1 {
break
}
runtime.Gosched()
}
if atomic.CompareAndSwapUint64(mu, v, v|1) {
return
}
runtime.Gosched()
}
}
func unlockBucket(mu *uint64) {
v := atomic.LoadUint64(mu)
atomic.StoreUint64(mu, v&^1)
}
func topHashMatch(hash, topHashes uint64, idx int) bool {
if topHashes&(1<<(idx+1)) == 0 {
// Entry is not present.
return false
}
hash = hash & topHashMask
topHashes = (topHashes & topHashEntryMasks[idx]) << (20 * idx)
return hash == topHashes
}
func storeTopHash(hash, topHashes uint64, idx int) uint64 {
// Zero out top hash at idx.
topHashes = topHashes &^ topHashEntryMasks[idx]
// Chop top 20 MSBs of the given hash and position them at idx.
hash = (hash & topHashMask) >> (20 * idx)
// Store the MSBs.
topHashes = topHashes | hash
// Mark the entry as present.
return topHashes | (1 << (idx + 1))
}
func eraseTopHash(topHashes uint64, idx int) uint64 {
return topHashes &^ (1 << (idx + 1))
}
func (table *mapTable) addSize(bucketIdx uint64, delta int) {
cidx := uint64(len(table.size)-1) & bucketIdx
atomic.AddInt64(&table.size[cidx].c, int64(delta))
}
func (table *mapTable) addSizePlain(bucketIdx uint64, delta int) {
cidx := uint64(len(table.size)-1) & bucketIdx
table.size[cidx].c += int64(delta)
}
func (table *mapTable) sumSize() int64 {
sum := int64(0)
for i := range table.size {
sum += atomic.LoadInt64(&table.size[i].c)
}
return sum
}
// MapStats is Map/MapOf statistics.
//
// Warning: map statistics are intented to be used for diagnostic
// purposes, not for production code. This means that breaking changes
// may be introduced into this struct even between minor releases.
type MapStats struct {
// RootBuckets is the number of root buckets in the hash table.
// Each bucket holds a few entries.
RootBuckets int
// TotalBuckets is the total number of buckets in the hash table,
// including root and their chained buckets. Each bucket holds
// a few entries.
TotalBuckets int
// EmptyBuckets is the number of buckets that hold no entries.
EmptyBuckets int
// Capacity is the Map/MapOf capacity, i.e. the total number of
// entries that all buckets can physically hold. This number
// does not consider the load factor.
Capacity int
// Size is the exact number of entries stored in the map.
Size int
// Counter is the number of entries stored in the map according
// to the internal atomic counter. In case of concurrent map
// modifications this number may be different from Size.
Counter int
// CounterLen is the number of internal atomic counter stripes.
// This number may grow with the map capacity to improve
// multithreaded scalability.
CounterLen int
// MinEntries is the minimum number of entries per a chain of
// buckets, i.e. a root bucket and its chained buckets.
MinEntries int
// MinEntries is the maximum number of entries per a chain of
// buckets, i.e. a root bucket and its chained buckets.
MaxEntries int
// TotalGrowths is the number of times the hash table grew.
TotalGrowths int64
// TotalGrowths is the number of times the hash table shrinked.
TotalShrinks int64
}
// ToString returns string representation of map stats.
func (s *MapStats) ToString() string {
var sb strings.Builder
sb.WriteString("MapStats{\n")
sb.WriteString(fmt.Sprintf("RootBuckets: %d\n", s.RootBuckets))
sb.WriteString(fmt.Sprintf("TotalBuckets: %d\n", s.TotalBuckets))
sb.WriteString(fmt.Sprintf("EmptyBuckets: %d\n", s.EmptyBuckets))
sb.WriteString(fmt.Sprintf("Capacity: %d\n", s.Capacity))
sb.WriteString(fmt.Sprintf("Size: %d\n", s.Size))
sb.WriteString(fmt.Sprintf("Counter: %d\n", s.Counter))
sb.WriteString(fmt.Sprintf("CounterLen: %d\n", s.CounterLen))
sb.WriteString(fmt.Sprintf("MinEntries: %d\n", s.MinEntries))
sb.WriteString(fmt.Sprintf("MaxEntries: %d\n", s.MaxEntries))
sb.WriteString(fmt.Sprintf("TotalGrowths: %d\n", s.TotalGrowths))
sb.WriteString(fmt.Sprintf("TotalShrinks: %d\n", s.TotalShrinks))
sb.WriteString("}\n")
return sb.String()
}
// Stats returns statistics for the Map. Just like other map
// methods, this one is thread-safe. Yet it's an O(N) operation,
// so it should be used only for diagnostics or debugging purposes.
func (m *Map) Stats() MapStats {
stats := MapStats{
TotalGrowths: atomic.LoadInt64(&m.totalGrowths),
TotalShrinks: atomic.LoadInt64(&m.totalShrinks),
MinEntries: math.MaxInt32,
}
table := (*mapTable)(atomic.LoadPointer(&m.table))
stats.RootBuckets = len(table.buckets)
stats.Counter = int(table.sumSize())
stats.CounterLen = len(table.size)
for i := range table.buckets {
nentries := 0
b := &table.buckets[i]
stats.TotalBuckets++
for {
nentriesLocal := 0
stats.Capacity += entriesPerMapBucket
for i := 0; i < entriesPerMapBucket; i++ {
if atomic.LoadPointer(&b.keys[i]) != nil {
stats.Size++
nentriesLocal++
}
}
nentries += nentriesLocal
if nentriesLocal == 0 {
stats.EmptyBuckets++
}
if b.next == nil {
break
}
b = (*bucketPadded)(atomic.LoadPointer(&b.next))
stats.TotalBuckets++
}
if nentries < stats.MinEntries {
stats.MinEntries = nentries
}
if nentries > stats.MaxEntries {
stats.MaxEntries = nentries
}
}
return stats
}