mirror of
1
Fork 0
gotosocial/vendor/github.com/ugorji/go/codec/gen.go

2802 lines
83 KiB
Go
Raw Normal View History

// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.
//go:build codecgen.exec
// +build codecgen.exec
package codec
import (
"bytes"
"encoding/base64"
"errors"
"fmt"
"go/format"
"io"
"io/ioutil"
"math/rand"
"os"
"reflect"
"regexp"
"sort"
"strconv"
"strings"
"sync"
"text/template"
"time"
// "ugorji.net/zz"
"unicode"
"unicode/utf8"
)
// ---------------------------------------------------
// codecgen supports the full cycle of reflection-based codec:
// - RawExt
// - Raw
// - Extensions
// - (Binary|Text|JSON)(Unm|M)arshal
// - generic by-kind
//
// This means that, for dynamic things, we MUST use reflection to at least get the reflect.Type.
// In those areas, we try to only do reflection or interface-conversion when NECESSARY:
// - Extensions, only if Extensions are configured.
//
// However, note following codecgen caveats:
// - Canonical option.
// If Canonical=true, codecgen'ed code will delegate encoding maps to reflection-based code.
// This is due to the runtime work needed to marshal a map in canonical mode.
// - CheckCircularRef option.
// When encoding a struct, a circular reference can lead to a stack overflow.
// If CheckCircularRef=true, codecgen'ed code will delegate encoding structs to reflection-based code.
// - MissingFielder implementation.
// If a type implements MissingFielder, a Selfer is not generated (with a warning message).
// Statically reproducing the runtime work needed to extract the missing fields and marshal them along with the struct fields,
// while handling the Canonical=true special case, was onerous to implement.
//
// During encode/decode, Selfer takes precedence.
// A type implementing Selfer will know how to encode/decode itself statically.
//
// The following field types are supported:
// array: [n]T
// slice: []T
// map: map[K]V
// primitive: [u]int[n], float(32|64), bool, string
// struct
//
// ---------------------------------------------------
// Note that a Selfer cannot call (e|d).(En|De)code on itself,
// as this will cause a circular reference, as (En|De)code will call Selfer methods.
// Any type that implements Selfer must implement completely and not fallback to (En|De)code.
//
// In addition, code in this file manages the generation of fast-path implementations of
// encode/decode of slices/maps of primitive keys/values.
//
// Users MUST re-generate their implementations whenever the code shape changes.
// The generated code will panic if it was generated with a version older than the supporting library.
// ---------------------------------------------------
//
// codec framework is very feature rich.
// When encoding or decoding into an interface, it depends on the runtime type of the interface.
// The type of the interface may be a named type, an extension, etc.
// Consequently, we fallback to runtime codec for encoding/decoding interfaces.
// In addition, we fallback for any value which cannot be guaranteed at runtime.
// This allows us support ANY value, including any named types, specifically those which
// do not implement our interfaces (e.g. Selfer).
//
// This explains some slowness compared to other code generation codecs (e.g. msgp).
// This reduction in speed is only seen when your refers to interfaces,
// e.g. type T struct { A interface{}; B []interface{}; C map[string]interface{} }
//
// codecgen will panic if the file was generated with an old version of the library in use.
//
// Note:
// It was a conscious decision to have gen.go always explicitly call EncodeNil or TryDecodeAsNil.
// This way, there isn't a function call overhead just to see that we should not enter a block of code.
//
// Note:
// codecgen-generated code depends on the variables defined by fast-path.generated.go.
// consequently, you cannot run with tags "codecgen codec.notfastpath".
//
// Note:
// genInternalXXX functions are used for generating fast-path and other internally generated
// files, and not for use in codecgen.
// Size of a struct or value is not portable across machines, especially across 32-bit vs 64-bit
// operating systems. This is due to types like int, uintptr, pointers, (and derived types like slice), etc
// which use the natural word size on those machines, which may be 4 bytes (on 32-bit) or 8 bytes (on 64-bit).
//
// Within decInferLen calls, we may generate an explicit size of the entry.
// We do this because decInferLen values are expected to be approximate,
// and serve as a good hint on the size of the elements or key+value entry.
//
// Since development is done on 64-bit machines, the sizes will be roughly correctly
// on 64-bit OS, and slightly larger than expected on 32-bit OS.
// This is ok.
//
// For reference, look for 'Size' in fast-path.go.tmpl, gen-dec-(array|map).go.tmpl and gen.go (this file).
// GenVersion is the current version of codecgen.
//
// MARKER: Increment this value each time codecgen changes fundamentally.
// Also update codecgen/gen.go (minimumCodecVersion, genVersion, etc).
// Fundamental changes are:
// - helper methods change (signature change, new ones added, some removed, etc)
// - codecgen command line changes
//
// v1: Initial Version
// v2: -
// v3: Changes for Kubernetes:
// changes in signature of some unpublished helper methods and codecgen cmdline arguments.
// v4: Removed separator support from (en|de)cDriver, and refactored codec(gen)
// v5: changes to support faster json decoding. Let encoder/decoder maintain state of collections.
// v6: removed unsafe from gen, and now uses codecgen.exec tag
// v7: -
// v8: current - we now maintain compatibility with old generated code.
// v9: skipped
// v10: modified encDriver and decDriver interfaces.
// v11: remove deprecated methods of encDriver and decDriver.
// v12: removed deprecated methods from genHelper and changed container tracking logic
// v13: 20190603 removed DecodeString - use DecodeStringAsBytes instead
// v14: 20190611 refactored nil handling: TryDecodeAsNil -> selective TryNil, etc
// v15: 20190626 encDriver.EncodeString handles StringToRaw flag inside handle
// v16: 20190629 refactoring for v1.1.6
// v17: 20200911 reduce number of types for which we generate fast path functions (v1.1.8)
// v18: 20201004 changed definition of genHelper...Extension (to take interface{}) and eliminated I2Rtid method
// v19: 20201115 updated codecgen cmdline flags and optimized output
// v20: 20201120 refactored GenHelper to one exported function
// v21: 20210104 refactored generated code to honor ZeroCopy=true for more efficiency
// v22: 20210118 fixed issue in generated code when encoding a type which is also a codec.Selfer
// v23: 20210203 changed slice/map types for which we generate fast-path functions
// v24: 20210226 robust handling for Canonical|CheckCircularRef flags and MissingFielder implementations
// v25: 20210406 pass base reflect.Type to side(En|De)code and (En|De)codeExt calls
const genVersion = 25
const (
genCodecPkg = "codec1978" // MARKER: keep in sync with codecgen/gen.go
genTempVarPfx = "yy"
genTopLevelVarName = "x"
// ignore canBeNil parameter, and always set to true.
// This is because nil can appear anywhere, so we should always check.
genAnythingCanBeNil = true
// if genUseOneFunctionForDecStructMap, make a single codecDecodeSelferFromMap function;
// else make codecDecodeSelferFromMap{LenPrefix,CheckBreak} so that conditionals
// are not executed a lot.
//
// From testing, it didn't make much difference in runtime, so keep as true (one function only)
genUseOneFunctionForDecStructMap = true
// genStructCanonical configures whether we generate 2 paths based on Canonical flag
// when encoding struct fields.
genStructCanonical = false
// genFastpathCanonical configures whether we support Canonical in fast path.
// The savings is not much.
//
// MARKER: This MUST ALWAYS BE TRUE. fast-path.go.tmp doesn't handle it being false.
genFastpathCanonical = true
// genFastpathTrimTypes configures whether we trim uncommon fastpath types.
genFastpathTrimTypes = true
// genDecStructArrayInlineLoopCheck configures whether we create a next function
// for each iteration in the loop and call it, or just inline it.
//
// with inlining, we get better performance but about 10% larger files.
genDecStructArrayInlineLoopCheck = true
)
type genStructMapStyle uint8
type genStringDecAsBytes string
type genStringDecZC string
var genStringDecAsBytesTyp = reflect.TypeOf(genStringDecAsBytes(""))
var genStringDecZCTyp = reflect.TypeOf(genStringDecZC(""))
var genFormats = []string{"Json", "Cbor", "Msgpack", "Binc", "Simple"}
const (
genStructMapStyleConsolidated genStructMapStyle = iota
genStructMapStyleLenPrefix
genStructMapStyleCheckBreak
)
var (
errGenAllTypesSamePkg = errors.New("All types must be in the same package")
errGenExpectArrayOrMap = errors.New("unexpected type - expecting array/map/slice")
errGenUnexpectedTypeFastpath = errors.New("fast-path: unexpected type - requires map or slice")
genBase64enc = base64.NewEncoding("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789__")
genQNameRegex = regexp.MustCompile(`[A-Za-z_.]+`)
)
type genBuf struct {
buf []byte
}
func (x *genBuf) sIf(b bool, s, t string) *genBuf {
if b {
x.buf = append(x.buf, s...)
} else {
x.buf = append(x.buf, t...)
}
return x
}
func (x *genBuf) s(s string) *genBuf { x.buf = append(x.buf, s...); return x }
func (x *genBuf) b(s []byte) *genBuf { x.buf = append(x.buf, s...); return x }
func (x *genBuf) v() string { return string(x.buf) }
func (x *genBuf) f(s string, args ...interface{}) { x.s(fmt.Sprintf(s, args...)) }
func (x *genBuf) reset() {
if x.buf != nil {
x.buf = x.buf[:0]
}
}
// genRunner holds some state used during a Gen run.
type genRunner struct {
w io.Writer // output
c uint64 // counter used for generating varsfx
f uint64 // counter used for saying false
t []reflect.Type // list of types to run selfer on
tc reflect.Type // currently running selfer on this type
te map[uintptr]bool // types for which the encoder has been created
td map[uintptr]bool // types for which the decoder has been created
tz map[uintptr]bool // types for which GenIsZero has been created
cp string // codec import path
im map[string]reflect.Type // imports to add
imn map[string]string // package names of imports to add
imc uint64 // counter for import numbers
is map[reflect.Type]struct{} // types seen during import search
bp string // base PkgPath, for which we are generating for
cpfx string // codec package prefix
ty map[reflect.Type]struct{} // types for which GenIsZero *should* be created
tm map[reflect.Type]struct{} // types for which enc/dec must be generated
ts []reflect.Type // types for which enc/dec must be generated
xs string // top level variable/constant suffix
hn string // fn helper type name
ti *TypeInfos
// rr *rand.Rand // random generator for file-specific types
jsonOnlyWhen, toArrayWhen, omitEmptyWhen *bool
nx bool // no extensions
}
type genIfClause struct {
hasIf bool
}
func (g *genIfClause) end(x *genRunner) {
if g.hasIf {
x.line("}")
}
}
func (g *genIfClause) c(last bool) (v string) {
if last {
if g.hasIf {
v = " } else { "
}
} else if g.hasIf {
v = " } else if "
} else {
v = "if "
g.hasIf = true
}
return
}
// Gen will write a complete go file containing Selfer implementations for each
// type passed. All the types must be in the same package.
//
// Library users: DO NOT USE IT DIRECTLY. IT WILL CHANGE CONTINUOUSLY WITHOUT NOTICE.
func Gen(w io.Writer, buildTags, pkgName, uid string, noExtensions bool,
jsonOnlyWhen, toArrayWhen, omitEmptyWhen *bool,
ti *TypeInfos, types ...reflect.Type) (warnings []string) {
// All types passed to this method do not have a codec.Selfer method implemented directly.
// codecgen already checks the AST and skips any types that define the codec.Selfer methods.
// Consequently, there's no need to check and trim them if they implement codec.Selfer
if len(types) == 0 {
return
}
x := genRunner{
w: w,
t: types,
te: make(map[uintptr]bool),
td: make(map[uintptr]bool),
tz: make(map[uintptr]bool),
im: make(map[string]reflect.Type),
imn: make(map[string]string),
is: make(map[reflect.Type]struct{}),
tm: make(map[reflect.Type]struct{}),
ty: make(map[reflect.Type]struct{}),
ts: []reflect.Type{},
bp: genImportPath(types[0]),
xs: uid,
ti: ti,
jsonOnlyWhen: jsonOnlyWhen,
toArrayWhen: toArrayWhen,
omitEmptyWhen: omitEmptyWhen,
nx: noExtensions,
}
if x.ti == nil {
x.ti = defTypeInfos
}
if x.xs == "" {
rr := rand.New(rand.NewSource(time.Now().UnixNano()))
x.xs = strconv.FormatInt(rr.Int63n(9999), 10)
}
// gather imports first:
x.cp = genImportPath(reflect.TypeOf(x))
x.imn[x.cp] = genCodecPkg
// iterate, check if all in same package, and remove any missingfielders
for i := 0; i < len(x.t); {
t := x.t[i]
// xdebugf("###########: PkgPath: '%v', Name: '%s'\n", genImportPath(t), t.Name())
if genImportPath(t) != x.bp {
halt.onerror(errGenAllTypesSamePkg)
}
ti1 := x.ti.get(rt2id(t), t)
if ti1.flagMissingFielder || ti1.flagMissingFielderPtr {
// output diagnostic message - that nothing generated for this type
warnings = append(warnings, fmt.Sprintf("type: '%v' not generated; implements codec.MissingFielder", t))
copy(x.t[i:], x.t[i+1:])
x.t = x.t[:len(x.t)-1]
continue
}
x.genRefPkgs(t)
i++
}
x.line("// +build go1.6")
if buildTags != "" {
x.line("// +build " + buildTags)
}
x.line(`
// Code generated by codecgen - DO NOT EDIT.
`)
x.line("package " + pkgName)
x.line("")
x.line("import (")
if x.cp != x.bp {
x.cpfx = genCodecPkg + "."
x.linef("%s \"%s\"", genCodecPkg, x.cp)
}
// use a sorted set of im keys, so that we can get consistent output
imKeys := make([]string, 0, len(x.im))
for k := range x.im {
imKeys = append(imKeys, k)
}
sort.Strings(imKeys)
for _, k := range imKeys { // for k, _ := range x.im {
if k == x.imn[k] {
x.linef("\"%s\"", k)
} else {
x.linef("%s \"%s\"", x.imn[k], k)
}
}
// add required packages
for _, k := range [...]string{"runtime", "errors", "strconv"} { // "reflect", "fmt"
if _, ok := x.im[k]; !ok {
x.line("\"" + k + "\"")
}
}
x.line(")")
x.line("")
x.line("const (")
x.linef("// ----- content types ----")
x.linef("codecSelferCcUTF8%s = %v", x.xs, int64(cUTF8))
x.linef("codecSelferCcRAW%s = %v", x.xs, int64(cRAW))
x.linef("// ----- value types used ----")
for _, vt := range [...]valueType{
valueTypeArray, valueTypeMap, valueTypeString,
valueTypeInt, valueTypeUint, valueTypeFloat,
valueTypeNil,
} {
x.linef("codecSelferValueType%s%s = %v", vt.String(), x.xs, int64(vt))
}
x.linef("codecSelferBitsize%s = uint8(32 << (^uint(0) >> 63))", x.xs)
x.linef("codecSelferDecContainerLenNil%s = %d", x.xs, int64(containerLenNil))
x.line(")")
x.line("var (")
x.line("errCodecSelferOnlyMapOrArrayEncodeToStruct" + x.xs + " = " + "errors.New(`only encoded map or array can be decoded into a struct`)")
x.line(")")
x.line("")
x.hn = "codecSelfer" + x.xs
x.line("type " + x.hn + " struct{}")
x.line("")
x.linef("func %sFalse() bool { return false }", x.hn)
x.linef("func %sTrue() bool { return true }", x.hn)
x.line("")
x.varsfxreset()
x.line("func init() {")
x.linef("if %sGenVersion != %v {", x.cpfx, genVersion)
x.line("_, file, _, _ := runtime.Caller(0)")
x.linef("ver := strconv.FormatInt(int64(%sGenVersion), 10)", x.cpfx)
x.outf(`panic(errors.New("codecgen version mismatch: current: %v, need " + ver + ". Re-generate file: " + file))`, genVersion)
x.linef("}")
if len(imKeys) > 0 {
x.line("if false { // reference the types, but skip this branch at build/run time")
for _, k := range imKeys {
t := x.im[k]
x.linef("var _ %s.%s", x.imn[k], t.Name())
}
x.line("} ") // close if false
}
x.line("}") // close init
x.line("")
// generate rest of type info
for _, t := range x.t {
x.tc = t
x.linef("func (%s) codecSelferViaCodecgen() {}", x.genTypeName(t))
x.selfer(true)
x.selfer(false)
x.tryGenIsZero(t)
}
for _, t := range x.ts {
rtid := rt2id(t)
// generate enc functions for all these slice/map types.
x.varsfxreset()
x.linef("func (x %s) enc%s(v %s%s, e *%sEncoder) {", x.hn, x.genMethodNameT(t), x.arr2str(t, "*"), x.genTypeName(t), x.cpfx)
x.genRequiredMethodVars(true)
switch t.Kind() {
case reflect.Array, reflect.Slice, reflect.Chan:
x.encListFallback("v", t)
case reflect.Map:
x.encMapFallback("v", t)
default:
halt.onerror(errGenExpectArrayOrMap)
}
x.line("}")
x.line("")
// generate dec functions for all these slice/map types.
x.varsfxreset()
x.linef("func (x %s) dec%s(v *%s, d *%sDecoder) {", x.hn, x.genMethodNameT(t), x.genTypeName(t), x.cpfx)
x.genRequiredMethodVars(false)
switch t.Kind() {
case reflect.Array, reflect.Slice, reflect.Chan:
x.decListFallback("v", rtid, t)
case reflect.Map:
x.decMapFallback("v", rtid, t)
default:
halt.onerror(errGenExpectArrayOrMap)
}
x.line("}")
x.line("")
}
for t := range x.ty {
x.tryGenIsZero(t)
x.line("")
}
x.line("")
return
}
func (x *genRunner) checkForSelfer(t reflect.Type, varname string) bool {
// return varname != genTopLevelVarName && t != x.tc
// the only time we checkForSelfer is if we are not at the TOP of the generated code.
return varname != genTopLevelVarName
}
func (x *genRunner) arr2str(t reflect.Type, s string) string {
if t.Kind() == reflect.Array {
return s
}
return ""
}
func (x *genRunner) genRequiredMethodVars(encode bool) {
x.line("var h " + x.hn)
if encode {
x.line("z, r := " + x.cpfx + "GenHelper().Encoder(e)")
} else {
x.line("z, r := " + x.cpfx + "GenHelper().Decoder(d)")
}
x.line("_, _, _ = h, z, r")
}
func (x *genRunner) genRefPkgs(t reflect.Type) {
if _, ok := x.is[t]; ok {
return
}
x.is[t] = struct{}{}
tpkg, tname := genImportPath(t), t.Name()
if tpkg != "" && tpkg != x.bp && tpkg != x.cp && tname != "" && tname[0] >= 'A' && tname[0] <= 'Z' {
if _, ok := x.im[tpkg]; !ok {
x.im[tpkg] = t
if idx := strings.LastIndex(tpkg, "/"); idx < 0 {
x.imn[tpkg] = tpkg
} else {
x.imc++
x.imn[tpkg] = "pkg" + strconv.FormatUint(x.imc, 10) + "_" + genGoIdentifier(tpkg[idx+1:], false)
}
}
}
switch t.Kind() {
case reflect.Array, reflect.Slice, reflect.Ptr, reflect.Chan:
x.genRefPkgs(t.Elem())
case reflect.Map:
x.genRefPkgs(t.Elem())
x.genRefPkgs(t.Key())
case reflect.Struct:
for i := 0; i < t.NumField(); i++ {
if fname := t.Field(i).Name; fname != "" && fname[0] >= 'A' && fname[0] <= 'Z' {
x.genRefPkgs(t.Field(i).Type)
}
}
}
}
// sayFalse will either say "false" or use a function call that returns false.
func (x *genRunner) sayFalse() string {
x.f++
if x.f%2 == 0 {
return x.hn + "False()"
}
return "false"
}
// sayFalse will either say "true" or use a function call that returns true.
func (x *genRunner) sayTrue() string {
x.f++
if x.f%2 == 0 {
return x.hn + "True()"
}
return "true"
}
func (x *genRunner) varsfx() string {
x.c++
return strconv.FormatUint(x.c, 10)
}
func (x *genRunner) varsfxreset() {
x.c = 0
}
func (x *genRunner) out(s string) {
_, err := io.WriteString(x.w, s)
genCheckErr(err)
}
func (x *genRunner) outf(s string, params ...interface{}) {
_, err := fmt.Fprintf(x.w, s, params...)
genCheckErr(err)
}
func (x *genRunner) line(s string) {
x.out(s)
if len(s) == 0 || s[len(s)-1] != '\n' {
x.out("\n")
}
}
func (x *genRunner) lineIf(s string) {
if s != "" {
x.line(s)
}
}
func (x *genRunner) linef(s string, params ...interface{}) {
x.outf(s, params...)
if len(s) == 0 || s[len(s)-1] != '\n' {
x.out("\n")
}
}
func (x *genRunner) genTypeName(t reflect.Type) (n string) {
// if the type has a PkgPath, which doesn't match the current package,
// then include it.
// We cannot depend on t.String() because it includes current package,
// or t.PkgPath because it includes full import path,
//
var ptrPfx string
for t.Kind() == reflect.Ptr {
ptrPfx += "*"
t = t.Elem()
}
if tn := t.Name(); tn != "" {
return ptrPfx + x.genTypeNamePrim(t)
}
switch t.Kind() {
case reflect.Map:
return ptrPfx + "map[" + x.genTypeName(t.Key()) + "]" + x.genTypeName(t.Elem())
case reflect.Slice:
return ptrPfx + "[]" + x.genTypeName(t.Elem())
case reflect.Array:
return ptrPfx + "[" + strconv.FormatInt(int64(t.Len()), 10) + "]" + x.genTypeName(t.Elem())
case reflect.Chan:
return ptrPfx + t.ChanDir().String() + " " + x.genTypeName(t.Elem())
default:
if t == intfTyp {
return ptrPfx + "interface{}"
} else {
return ptrPfx + x.genTypeNamePrim(t)
}
}
}
func (x *genRunner) genTypeNamePrim(t reflect.Type) (n string) {
if t.Name() == "" {
return t.String()
} else if genImportPath(t) == "" || genImportPath(t) == genImportPath(x.tc) {
return t.Name()
} else {
return x.imn[genImportPath(t)] + "." + t.Name()
// return t.String() // best way to get the package name inclusive
}
}
func (x *genRunner) genZeroValueR(t reflect.Type) string {
// if t is a named type, w
switch t.Kind() {
case reflect.Ptr, reflect.Interface, reflect.Chan, reflect.Func,
reflect.Slice, reflect.Map, reflect.Invalid:
return "nil"
case reflect.Bool:
return "false"
case reflect.String:
return `""`
case reflect.Struct, reflect.Array:
return x.genTypeName(t) + "{}"
default: // all numbers
return "0"
}
}
func (x *genRunner) genMethodNameT(t reflect.Type) (s string) {
return genMethodNameT(t, x.tc)
}
func (x *genRunner) tryGenIsZero(t reflect.Type) (done bool) {
if t.Kind() != reflect.Struct || t.Implements(isCodecEmptyerTyp) {
return
}
rtid := rt2id(t)
if _, ok := x.tz[rtid]; ok {
delete(x.ty, t)
return
}
x.tz[rtid] = true
delete(x.ty, t)
ti := x.ti.get(rtid, t)
tisfi := ti.sfi.source() // always use sequence from file. decStruct expects same thing.
varname := genTopLevelVarName
x.linef("func (%s *%s) IsCodecEmpty() bool {", varname, x.genTypeName(t))
anonSeen := make(map[reflect.Type]bool)
var omitline genBuf
for _, si := range tisfi {
if si.path.parent != nil {
root := si.path.root()
if anonSeen[root.typ] {
continue
}
anonSeen[root.typ] = true
}
t2 := genOmitEmptyLinePreChecks(varname, t, si, &omitline, true)
// if Ptr, we already checked if nil above
if t2.Type.Kind() != reflect.Ptr {
x.doEncOmitEmptyLine(t2, varname, &omitline)
omitline.s(" || ")
}
}
omitline.s(" false")
x.linef("return !(%s)", omitline.v())
x.line("}")
x.line("")
return true
}
func (x *genRunner) selfer(encode bool) {
t := x.tc
// ti := x.ti.get(rt2id(t), t)
t0 := t
// always make decode use a pointer receiver,
// and structs/arrays always use a ptr receiver (encode|decode)
isptr := !encode || t.Kind() == reflect.Array || (t.Kind() == reflect.Struct && t != timeTyp)
x.varsfxreset()
fnSigPfx := "func (" + genTopLevelVarName + " "
if isptr {
fnSigPfx += "*"
}
fnSigPfx += x.genTypeName(t)
x.out(fnSigPfx)
if isptr {
t = reflect.PtrTo(t)
}
if encode {
x.line(") CodecEncodeSelf(e *" + x.cpfx + "Encoder) {")
x.genRequiredMethodVars(true)
if t0.Kind() == reflect.Struct {
x.linef("if z.EncBasicHandle().CheckCircularRef { z.EncEncode(%s); return }", genTopLevelVarName)
}
x.encVar(genTopLevelVarName, t)
} else {
x.line(") CodecDecodeSelf(d *" + x.cpfx + "Decoder) {")
x.genRequiredMethodVars(false)
// do not use decVar, as there is no need to check TryDecodeAsNil
// or way to elegantly handle that, and also setting it to a
// non-nil value doesn't affect the pointer passed.
// x.decVar(genTopLevelVarName, t, false)
x.dec(genTopLevelVarName, t0, true)
}
x.line("}")
x.line("")
if encode || t0.Kind() != reflect.Struct {
return
}
// write is containerMap
if genUseOneFunctionForDecStructMap {
x.out(fnSigPfx)
x.line(") codecDecodeSelfFromMap(l int, d *" + x.cpfx + "Decoder) {")
x.genRequiredMethodVars(false)
x.decStructMap(genTopLevelVarName, "l", rt2id(t0), t0, genStructMapStyleConsolidated)
x.line("}")
x.line("")
} else {
x.out(fnSigPfx)
x.line(") codecDecodeSelfFromMapLenPrefix(l int, d *" + x.cpfx + "Decoder) {")
x.genRequiredMethodVars(false)
x.decStructMap(genTopLevelVarName, "l", rt2id(t0), t0, genStructMapStyleLenPrefix)
x.line("}")
x.line("")
x.out(fnSigPfx)
x.line(") codecDecodeSelfFromMapCheckBreak(l int, d *" + x.cpfx + "Decoder) {")
x.genRequiredMethodVars(false)
x.decStructMap(genTopLevelVarName, "l", rt2id(t0), t0, genStructMapStyleCheckBreak)
x.line("}")
x.line("")
}
// write containerArray
x.out(fnSigPfx)
x.line(") codecDecodeSelfFromArray(l int, d *" + x.cpfx + "Decoder) {")
x.genRequiredMethodVars(false)
x.decStructArray(genTopLevelVarName, "l", "return", rt2id(t0), t0)
x.line("}")
x.line("")
}
// used for chan, array, slice, map
func (x *genRunner) xtraSM(varname string, t reflect.Type, ti *typeInfo, encode, isptr bool) {
var ptrPfx, addrPfx string
if isptr {
ptrPfx = "*"
} else {
addrPfx = "&"
}
if encode {
x.linef("h.enc%s((%s%s)(%s), e)", x.genMethodNameT(t), ptrPfx, x.genTypeName(t), varname)
} else {
x.linef("h.dec%s((*%s)(%s%s), d)", x.genMethodNameT(t), x.genTypeName(t), addrPfx, varname)
}
x.registerXtraT(t, ti)
}
func (x *genRunner) registerXtraT(t reflect.Type, ti *typeInfo) {
// recursively register the types
tk := t.Kind()
if tk == reflect.Ptr {
x.registerXtraT(t.Elem(), nil)
return
}
if _, ok := x.tm[t]; ok {
return
}
switch tk {
case reflect.Chan, reflect.Slice, reflect.Array, reflect.Map:
default:
return
}
// only register the type if it will not default to a fast-path
if ti == nil {
ti = x.ti.get(rt2id(t), t)
}
if _, rtidu := genFastpathUnderlying(t, ti.rtid, ti); fastpathAvIndex(rtidu) != -1 {
return
}
x.tm[t] = struct{}{}
x.ts = append(x.ts, t)
// check if this refers to any xtra types eg. a slice of array: add the array
x.registerXtraT(t.Elem(), nil)
if tk == reflect.Map {
x.registerXtraT(t.Key(), nil)
}
}
// encVar will encode a variable.
// The parameter, t, is the reflect.Type of the variable itself
func (x *genRunner) encVar(varname string, t reflect.Type) {
var checkNil bool
// case reflect.Ptr, reflect.Interface, reflect.Slice, reflect.Map, reflect.Chan:
// do not include checkNil for slice and maps, as we already checkNil below it
switch t.Kind() {
case reflect.Ptr, reflect.Interface, reflect.Chan:
checkNil = true
}
x.encVarChkNil(varname, t, checkNil)
}
func (x *genRunner) encVarChkNil(varname string, t reflect.Type, checkNil bool) {
if checkNil {
x.linef("if %s == nil { r.EncodeNil() } else {", varname)
}
switch t.Kind() {
case reflect.Ptr:
telem := t.Elem()
tek := telem.Kind()
if tek == reflect.Array || (tek == reflect.Struct && telem != timeTyp) {
x.enc(varname, genNonPtr(t), true)
break
}
i := x.varsfx()
x.line(genTempVarPfx + i + " := *" + varname)
x.enc(genTempVarPfx+i, genNonPtr(t), false)
case reflect.Struct, reflect.Array:
if t == timeTyp {
x.enc(varname, t, false)
break
}
i := x.varsfx()
x.line(genTempVarPfx + i + " := &" + varname)
x.enc(genTempVarPfx+i, t, true)
default:
x.enc(varname, t, false)
}
if checkNil {
x.line("}")
}
}
// enc will encode a variable (varname) of type t, where t represents T.
// if t is !time.Time and t is of kind reflect.Struct or reflect.Array, varname is of type *T
// (to prevent copying),
// else t is of type T
func (x *genRunner) enc(varname string, t reflect.Type, isptr bool) {
rtid := rt2id(t)
ti2 := x.ti.get(rtid, t)
// We call CodecEncodeSelf if one of the following are honored:
// - the type already implements Selfer, call that
// - the type has a Selfer implementation just created, use that
// - the type is in the list of the ones we will generate for, but it is not currently being generated
mi := x.varsfx()
// tptr := reflect.PtrTo(t)
// tk := t.Kind()
// check if
// - type is time.Time, RawExt, Raw
// - the type implements (Text|JSON|Binary)(Unm|M)arshal
var hasIf genIfClause
defer hasIf.end(x) // end if block (if necessary)
var ptrPfx, addrPfx string
if isptr {
ptrPfx = "*"
} else {
addrPfx = "&"
}
if t == timeTyp {
x.linef("%s z.EncBasicHandle().TimeBuiltin() { r.EncodeTime(%s%s)", hasIf.c(false), ptrPfx, varname)
// return
}
if t == rawTyp {
x.linef("%s z.EncRaw(%s%s)", hasIf.c(true), ptrPfx, varname)
return
}
if t == rawExtTyp {
x.linef("%s r.EncodeRawExt(%s%s)", hasIf.c(true), addrPfx, varname)
return
}
// only check for extensions if extensions are configured,
// and the type is named, and has a packagePath,
// and this is not the CodecEncodeSelf or CodecDecodeSelf method (i.e. it is not a Selfer)
if !x.nx && varname != genTopLevelVarName && t != genStringDecAsBytesTyp &&
t != genStringDecZCTyp && genImportPath(t) != "" && t.Name() != "" {
yy := fmt.Sprintf("%sxt%s", genTempVarPfx, mi)
x.linef("%s %s := z.Extension(%s); %s != nil { z.EncExtension(%s, %s) ",
hasIf.c(false), yy, varname, yy, varname, yy)
}
if x.checkForSelfer(t, varname) {
if ti2.flagSelfer {
x.linef("%s %s.CodecEncodeSelf(e)", hasIf.c(true), varname)
return
} else if ti2.flagSelferPtr {
x.linef("%s %ssf%s := &%s", hasIf.c(true), genTempVarPfx, mi, varname)
x.linef("%ssf%s.CodecEncodeSelf(e)", genTempVarPfx, mi)
return
}
if _, ok := x.te[rtid]; ok {
x.linef("%s %s.CodecEncodeSelf(e)", hasIf.c(true), varname)
return
}
}
inlist := false
for _, t0 := range x.t {
if t == t0 {
inlist = true
if x.checkForSelfer(t, varname) {
x.linef("%s %s.CodecEncodeSelf(e)", hasIf.c(true), varname)
return
}
break
}
}
var rtidAdded bool
if t == x.tc {
x.te[rtid] = true
rtidAdded = true
}
if ti2.flagBinaryMarshaler {
x.linef("%s z.EncBinary() { z.EncBinaryMarshal(%s%v) ", hasIf.c(false), ptrPfx, varname)
} else if ti2.flagBinaryMarshalerPtr {
x.linef("%s z.EncBinary() { z.EncBinaryMarshal(%s%v) ", hasIf.c(false), addrPfx, varname)
}
if ti2.flagJsonMarshaler {
x.linef("%s !z.EncBinary() && z.IsJSONHandle() { z.EncJSONMarshal(%s%v) ", hasIf.c(false), ptrPfx, varname)
} else if ti2.flagJsonMarshalerPtr {
x.linef("%s !z.EncBinary() && z.IsJSONHandle() { z.EncJSONMarshal(%s%v) ", hasIf.c(false), addrPfx, varname)
} else if ti2.flagTextMarshaler {
x.linef("%s !z.EncBinary() { z.EncTextMarshal(%s%v) ", hasIf.c(false), ptrPfx, varname)
} else if ti2.flagTextMarshalerPtr {
x.linef("%s !z.EncBinary() { z.EncTextMarshal(%s%v) ", hasIf.c(false), addrPfx, varname)
}
x.lineIf(hasIf.c(true))
switch t.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
x.line("r.EncodeInt(int64(" + varname + "))")
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
x.line("r.EncodeUint(uint64(" + varname + "))")
case reflect.Float32:
x.line("r.EncodeFloat32(float32(" + varname + "))")
case reflect.Float64:
x.line("r.EncodeFloat64(float64(" + varname + "))")
case reflect.Complex64:
x.linef("z.EncEncodeComplex64(complex64(%s))", varname)
case reflect.Complex128:
x.linef("z.EncEncodeComplex128(complex128(%s))", varname)
case reflect.Bool:
x.line("r.EncodeBool(bool(" + varname + "))")
case reflect.String:
x.linef("r.EncodeString(string(%s))", varname)
case reflect.Chan:
x.xtraSM(varname, t, ti2, true, false)
// x.encListFallback(varname, rtid, t)
case reflect.Array:
_, rtidu := genFastpathUnderlying(t, rtid, ti2)
if fastpathAvIndex(rtidu) != -1 {
g := x.newFastpathGenV(ti2.key)
x.linef("z.F.%sV((%s)(%s[:]), e)", g.MethodNamePfx("Enc", false), x.genTypeName(ti2.key), varname)
} else {
x.xtraSM(varname, t, ti2, true, true)
}
case reflect.Slice:
// if nil, call dedicated function
// if a []byte, call dedicated function
// if a known fastpath slice, call dedicated function
// else write encode function in-line.
// - if elements are primitives or Selfers, call dedicated function on each member.
// - else call Encoder.encode(XXX) on it.
x.linef("if %s == nil { r.EncodeNil() } else {", varname)
if rtid == uint8SliceTypId {
x.line("r.EncodeStringBytesRaw([]byte(" + varname + "))")
} else {
tu, rtidu := genFastpathUnderlying(t, rtid, ti2)
if fastpathAvIndex(rtidu) != -1 {
g := x.newFastpathGenV(tu)
if rtid == rtidu {
x.linef("z.F.%sV(%s, e)", g.MethodNamePfx("Enc", false), varname)
} else {
x.linef("z.F.%sV((%s)(%s), e)", g.MethodNamePfx("Enc", false), x.genTypeName(tu), varname)
}
} else {
x.xtraSM(varname, t, ti2, true, false)
}
}
x.linef("} // end block: if %s slice == nil", varname)
case reflect.Map:
// if nil, call dedicated function
// if a known fastpath map, call dedicated function
// else write encode function in-line.
// - if elements are primitives or Selfers, call dedicated function on each member.
// - else call Encoder.encode(XXX) on it.
x.linef("if %s == nil { r.EncodeNil() } else {", varname)
tu, rtidu := genFastpathUnderlying(t, rtid, ti2)
if fastpathAvIndex(rtidu) != -1 {
g := x.newFastpathGenV(tu)
if rtid == rtidu {
x.linef("z.F.%sV(%s, e)", g.MethodNamePfx("Enc", false), varname)
} else {
x.linef("z.F.%sV((%s)(%s), e)", g.MethodNamePfx("Enc", false), x.genTypeName(tu), varname)
}
} else {
x.xtraSM(varname, t, ti2, true, false)
}
x.linef("} // end block: if %s map == nil", varname)
case reflect.Struct:
if !inlist {
delete(x.te, rtid)
x.line("z.EncFallback(" + varname + ")")
break
}
x.encStruct(varname, rtid, t)
default:
if rtidAdded {
delete(x.te, rtid)
}
x.line("z.EncFallback(" + varname + ")")
}
}
func (x *genRunner) encZero(t reflect.Type) {
switch t.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
x.line("r.EncodeInt(0)")
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
x.line("r.EncodeUint(0)")
case reflect.Float32:
x.line("r.EncodeFloat32(0)")
case reflect.Float64:
x.line("r.EncodeFloat64(0)")
case reflect.Complex64:
x.line("z.EncEncodeComplex64(0)")
case reflect.Complex128:
x.line("z.EncEncodeComplex128(0)")
case reflect.Bool:
x.line("r.EncodeBool(false)")
case reflect.String:
x.linef(`r.EncodeString("")`)
default:
x.line("r.EncodeNil()")
}
}
func genOmitEmptyLinePreChecks(varname string, t reflect.Type, si *structFieldInfo, omitline *genBuf, oneLevel bool) (t2 reflect.StructField) {
// xdebug2f("calling genOmitEmptyLinePreChecks on: %v", t)
t2typ := t
varname3 := varname
// go through the loop, record the t2 field explicitly,
// and gather the omit line if embedded in pointers.
fullpath := si.path.fullpath()
for i, path := range fullpath {
for t2typ.Kind() == reflect.Ptr {
t2typ = t2typ.Elem()
}
t2 = t2typ.Field(int(path.index))
t2typ = t2.Type
varname3 = varname3 + "." + t2.Name
// do not include actual field in the omit line.
// that is done subsequently (right after - below).
if i+1 < len(fullpath) && t2typ.Kind() == reflect.Ptr {
omitline.s(varname3).s(" != nil && ")
}
if oneLevel {
break
}
}
return
}
func (x *genRunner) doEncOmitEmptyLine(t2 reflect.StructField, varname string, buf *genBuf) {
x.f = 0
x.encOmitEmptyLine(t2, varname, buf)
}
func (x *genRunner) encOmitEmptyLine(t2 reflect.StructField, varname string, buf *genBuf) {
// xdebugf("calling encOmitEmptyLine on: %v", t2.Type)
// smartly check omitEmpty on a struct type, as it may contain uncomparable map/slice/etc.
// also, for maps/slices/arrays, check if len ! 0 (not if == zero value)
varname2 := varname + "." + t2.Name
switch t2.Type.Kind() {
case reflect.Struct:
rtid2 := rt2id(t2.Type)
ti2 := x.ti.get(rtid2, t2.Type)
// xdebugf(">>>> structfield: omitempty: type: %s, field: %s\n", t2.Type.Name(), t2.Name)
if ti2.rtid == timeTypId {
buf.s("!(").s(varname2).s(".IsZero())")
break
}
if ti2.flagIsZeroerPtr || ti2.flagIsZeroer {
buf.s("!(").s(varname2).s(".IsZero())")
break
}
if t2.Type.Implements(isCodecEmptyerTyp) {
buf.s("!(").s(varname2).s(".IsCodecEmpty())")
break
}
_, ok := x.tz[rtid2]
if ok {
buf.s("!(").s(varname2).s(".IsCodecEmpty())")
break
}
// if we *should* create a IsCodecEmpty for it, but haven't yet, add it here
// _, ok = x.ty[rtid2]
if genImportPath(t2.Type) == x.bp {
x.ty[t2.Type] = struct{}{}
buf.s("!(").s(varname2).s(".IsCodecEmpty())")
break
}
if ti2.flagComparable {
buf.s(varname2).s(" != ").s(x.genZeroValueR(t2.Type))
break
}
// fmt.Printf("???? !!!! We shouldn't get to this point !!!! ???? - for type: %v\n", t2.Type)
// buf.s("(")
buf.s(x.sayFalse()) // buf.s("false")
for i, n := 0, t2.Type.NumField(); i < n; i++ {
f := t2.Type.Field(i)
if f.PkgPath != "" { // unexported
continue
}
buf.s(" || ")
x.encOmitEmptyLine(f, varname2, buf)
}
//buf.s(")")
case reflect.Bool:
buf.s("bool(").s(varname2).s(")")
case reflect.Map, reflect.Slice, reflect.Array, reflect.Chan:
buf.s("len(").s(varname2).s(") != 0")
default:
buf.s(varname2).s(" != ").s(x.genZeroValueR(t2.Type))
}
}
func (x *genRunner) encStruct(varname string, rtid uintptr, t reflect.Type) {
// Use knowledge from structfieldinfo (mbs, encodable fields. Ignore omitempty. )
// replicate code in kStruct i.e. for each field, deref type to non-pointer, and call x.enc on it
// if t === type currently running selfer on, do for all
ti := x.ti.get(rtid, t)
i := x.varsfx()
// sepVarname := genTempVarPfx + "sep" + i
numfieldsvar := genTempVarPfx + "q" + i
ti2arrayvar := genTempVarPfx + "r" + i
struct2arrvar := genTempVarPfx + "2arr" + i
tisfi := ti.sfi.source() // always use sequence from file. decStruct expects same thing.
type genFQN struct {
i string
fqname string
nilLine genBuf
nilVar string
canNil bool
sf reflect.StructField
}
genFQNs := make([]genFQN, len(tisfi))
for j, si := range tisfi {
q := &genFQNs[j]
q.i = x.varsfx()
q.nilVar = genTempVarPfx + "n" + q.i
q.canNil = false
q.fqname = varname
{
t2typ := t
fullpath := si.path.fullpath()
for _, path := range fullpath {
for t2typ.Kind() == reflect.Ptr {
t2typ = t2typ.Elem()
}
q.sf = t2typ.Field(int(path.index))
t2typ = q.sf.Type
q.fqname += "." + q.sf.Name
if t2typ.Kind() == reflect.Ptr {
if !q.canNil {
q.nilLine.f("%s == nil", q.fqname)
q.canNil = true
} else {
q.nilLine.f(" || %s == nil", q.fqname)
}
}
}
}
}
// x.line(sepVarname + " := !z.EncBinary()")
x.linef("%s := z.EncBasicHandle().StructToArray", struct2arrvar)
// x.linef("_, _ = %s, %s", sepVarname, struct2arrvar)
x.linef("_ = %s", struct2arrvar)
x.linef("const %s bool = %v // struct tag has 'toArray'", ti2arrayvar, ti.toArray)
for j := range genFQNs {
q := &genFQNs[j]
if q.canNil {
x.linef("var %s bool = %s", q.nilVar, q.nilLine.v())
}
}
// var nn int
// due to omitEmpty, we need to calculate the
// number of non-empty things we write out first.
// This is required as we need to pre-determine the size of the container,
// to support length-prefixing.
omitEmptySometimes := x.omitEmptyWhen == nil
omitEmptyAlways := (x.omitEmptyWhen != nil && *(x.omitEmptyWhen))
// omitEmptyNever := (x.omitEmptyWhen != nil && !*(x.omitEmptyWhen))
toArraySometimes := x.toArrayWhen == nil
toArrayAlways := (x.toArrayWhen != nil && *(x.toArrayWhen))
toArrayNever := (x.toArrayWhen != nil && !(*(x.toArrayWhen)))
if (omitEmptySometimes && ti.anyOmitEmpty) || omitEmptyAlways {
x.linef("var %s = [%v]bool{ // should field at this index be written?", numfieldsvar, len(tisfi))
for _, si := range tisfi {
if omitEmptySometimes && !si.path.omitEmpty {
x.linef("true, // %s", si.encName) // si.fieldName)
continue
}
var omitline genBuf
t2 := genOmitEmptyLinePreChecks(varname, t, si, &omitline, false)
x.doEncOmitEmptyLine(t2, varname, &omitline)
x.linef("%s, // %s", omitline.v(), si.encName) // si.fieldName)
}
x.line("}")
x.linef("_ = %s", numfieldsvar)
}
if toArraySometimes {
x.linef("if %s || %s {", ti2arrayvar, struct2arrvar) // if ti.toArray
}
if toArraySometimes || toArrayAlways {
x.linef("z.EncWriteArrayStart(%d)", len(tisfi))
for j, si := range tisfi {
doOmitEmptyCheck := (omitEmptySometimes && si.path.omitEmpty) || omitEmptyAlways
q := &genFQNs[j]
// if the type of the field is a Selfer, or one of the ones
if q.canNil {
x.linef("if %s { z.EncWriteArrayElem(); r.EncodeNil() } else { ", q.nilVar)
}
x.linef("z.EncWriteArrayElem()")
if doOmitEmptyCheck {
x.linef("if %s[%v] {", numfieldsvar, j)
}
x.encVarChkNil(q.fqname, q.sf.Type, false)
if doOmitEmptyCheck {
x.linef("} else {")
x.encZero(q.sf.Type)
x.linef("}")
}
if q.canNil {
x.line("}")
}
}
x.line("z.EncWriteArrayEnd()")
}
if toArraySometimes {
x.linef("} else {") // if not ti.toArray
}
if toArraySometimes || toArrayNever {
if (omitEmptySometimes && ti.anyOmitEmpty) || omitEmptyAlways {
x.linef("var %snn%s int", genTempVarPfx, i)
x.linef("for _, b := range %s { if b { %snn%s++ } }", numfieldsvar, genTempVarPfx, i)
x.linef("z.EncWriteMapStart(%snn%s)", genTempVarPfx, i)
x.linef("%snn%s = %v", genTempVarPfx, i, 0)
} else {
x.linef("z.EncWriteMapStart(%d)", len(tisfi))
}
fn := func(tisfi []*structFieldInfo) {
for j, si := range tisfi {
q := &genFQNs[j]
doOmitEmptyCheck := (omitEmptySometimes && si.path.omitEmpty) || omitEmptyAlways
if doOmitEmptyCheck {
x.linef("if %s[%v] {", numfieldsvar, j)
}
x.linef("z.EncWriteMapElemKey()")
// emulate EncStructFieldKey
switch ti.keyType {
case valueTypeInt:
x.linef("r.EncodeInt(z.M.Int(strconv.ParseInt(`%s`, 10, 64)))", si.encName)
case valueTypeUint:
x.linef("r.EncodeUint(z.M.Uint(strconv.ParseUint(`%s`, 10, 64)))", si.encName)
case valueTypeFloat:
x.linef("r.EncodeFloat64(z.M.Float(strconv.ParseFloat(`%s`, 64)))", si.encName)
default: // string
if x.jsonOnlyWhen == nil {
if si.path.encNameAsciiAlphaNum {
x.linef(`if z.IsJSONHandle() { z.WriteStr("\"%s\"") } else { `, si.encName)
}
x.linef("r.EncodeString(`%s`)", si.encName)
if si.path.encNameAsciiAlphaNum {
x.linef("}")
}
} else if *(x.jsonOnlyWhen) {
if si.path.encNameAsciiAlphaNum {
x.linef(`z.WriteStr("\"%s\"")`, si.encName)
} else {
x.linef("r.EncodeString(`%s`)", si.encName)
}
} else {
x.linef("r.EncodeString(`%s`)", si.encName)
}
}
x.line("z.EncWriteMapElemValue()")
if q.canNil {
x.line("if " + q.nilVar + " { r.EncodeNil() } else { ")
x.encVarChkNil(q.fqname, q.sf.Type, false)
x.line("}")
} else {
x.encVarChkNil(q.fqname, q.sf.Type, false)
}
if doOmitEmptyCheck {
x.line("}")
}
}
}
if genStructCanonical {
x.linef("if z.EncBasicHandle().Canonical {") // if Canonical block
fn(ti.sfi.sorted())
x.linef("} else {") // else !cononical block
fn(ti.sfi.source())
x.linef("}") // end if Canonical block
} else {
fn(tisfi)
}
x.line("z.EncWriteMapEnd()")
}
if toArraySometimes {
x.linef("} ") // end if/else ti.toArray
}
}
func (x *genRunner) encListFallback(varname string, t reflect.Type) {
x.linef("if %s == nil { r.EncodeNil(); return }", varname)
elemBytes := t.Elem().Kind() == reflect.Uint8
if t.AssignableTo(uint8SliceTyp) {
x.linef("r.EncodeStringBytesRaw([]byte(%s))", varname)
return
}
if t.Kind() == reflect.Array && elemBytes {
x.linef("r.EncodeStringBytesRaw(((*[%d]byte)(%s))[:])", t.Len(), varname)
return
}
i := x.varsfx()
if t.Kind() == reflect.Chan {
type ts struct {
Label, Chan, Slice, Sfx string
}
tm, err := template.New("").Parse(genEncChanTmpl)
genCheckErr(err)
x.linef("if %s == nil { r.EncodeNil() } else { ", varname)
x.linef("var sch%s []%s", i, x.genTypeName(t.Elem()))
err = tm.Execute(x.w, &ts{"Lsch" + i, varname, "sch" + i, i})
genCheckErr(err)
if elemBytes {
x.linef("r.EncodeStringBytesRaw([]byte(%s))", "sch"+i)
x.line("}")
return
}
varname = "sch" + i
}
x.line("z.EncWriteArrayStart(len(" + varname + "))")
// x.linef("for _, %sv%s := range %s {", genTempVarPfx, i, varname)
// x.linef("z.EncWriteArrayElem()")
// x.encVar(genTempVarPfx+"v"+i, t.Elem())
// x.line("}")
x.linef("for %sv%s := range %s {", genTempVarPfx, i, varname)
x.linef("z.EncWriteArrayElem()")
x.encVar(fmt.Sprintf("%s[%sv%s]", varname, genTempVarPfx, i), t.Elem())
x.line("}")
x.line("z.EncWriteArrayEnd()")
if t.Kind() == reflect.Chan {
x.line("}")
}
}
func (x *genRunner) encMapFallback(varname string, t reflect.Type) {
x.linef("if %s == nil { r.EncodeNil()", varname)
x.linef("} else if z.EncBasicHandle().Canonical { z.EncEncodeMapNonNil(%s)", varname)
x.line("} else {")
i := x.varsfx()
x.linef("z.EncWriteMapStart(len(%s))", varname)
x.linef("for %sk%s, %sv%s := range %s {", genTempVarPfx, i, genTempVarPfx, i, varname)
x.linef("z.EncWriteMapElemKey()")
x.encVar(genTempVarPfx+"k"+i, t.Key())
x.line("z.EncWriteMapElemValue()")
x.encVar(genTempVarPfx+"v"+i, t.Elem())
x.line("}")
x.line("z.EncWriteMapEnd()")
x.line("}")
}
func (x *genRunner) decVarInitPtr(varname, nilvar string, t reflect.Type, si *structFieldInfo,
newbuf, nilbuf *genBuf) (varname3 string, t2 reflect.StructField) {
//we must accommodate anonymous fields, where the embedded field is a nil pointer in the value.
// t2 = t.FieldByIndex(si.is)
varname3 = varname
t2typ := t
t2kind := t2typ.Kind()
var nilbufed bool
if si != nil {
fullpath := si.path.fullpath()
for _, path := range fullpath {
// only one-level pointers can be seen in a type
if t2typ.Kind() == reflect.Ptr {
t2typ = t2typ.Elem()
}
t2 = t2typ.Field(int(path.index))
t2typ = t2.Type
varname3 = varname3 + "." + t2.Name
t2kind = t2typ.Kind()
if t2kind != reflect.Ptr {
continue
}
if newbuf != nil {
if len(newbuf.buf) > 0 {
newbuf.s("\n")
}
newbuf.f("if %s == nil { %s = new(%s) }", varname3, varname3, x.genTypeName(t2typ.Elem()))
}
if nilbuf != nil {
if !nilbufed {
nilbuf.s("if ").s(varname3).s(" != nil")
nilbufed = true
} else {
nilbuf.s(" && ").s(varname3).s(" != nil")
}
}
}
}
if nilbuf != nil {
if nilbufed {
nilbuf.s(" { ").s("// remove the if-true\n")
}
if nilvar != "" {
nilbuf.s(nilvar).s(" = true")
} else if tk := t2typ.Kind(); tk == reflect.Ptr {
if strings.IndexByte(varname3, '.') != -1 || strings.IndexByte(varname3, '[') != -1 {
nilbuf.s(varname3).s(" = nil")
} else {
nilbuf.s("*").s(varname3).s(" = ").s(x.genZeroValueR(t2typ.Elem()))
}
} else {
nilbuf.s(varname3).s(" = ").s(x.genZeroValueR(t2typ))
}
if nilbufed {
nilbuf.s("}")
}
}
return
}
// decVar takes a variable called varname, of type t
func (x *genRunner) decVarMain(varname, rand string, t reflect.Type, checkNotNil bool) {
// We only encode as nil if a nillable value.
// This removes some of the wasted checks for TryDecodeAsNil.
// We need to think about this more, to see what happens if omitempty, etc
// cause a nil value to be stored when something is expected.
// This could happen when decoding from a struct encoded as an array.
// For that, decVar should be called with canNil=true, to force true as its value.
var varname2 string
if t.Kind() != reflect.Ptr {
if t.PkgPath() != "" || !x.decTryAssignPrimitive(varname, t, false) {
x.dec(varname, t, false)
}
} else {
if checkNotNil {
x.linef("if %s == nil { %s = new(%s) }", varname, varname, x.genTypeName(t.Elem()))
}
// Ensure we set underlying ptr to a non-nil value (so we can deref to it later).
// There's a chance of a **T in here which is nil.
var ptrPfx string
for t = t.Elem(); t.Kind() == reflect.Ptr; t = t.Elem() {
ptrPfx += "*"
if checkNotNil {
x.linef("if %s%s == nil { %s%s = new(%s)}", ptrPfx, varname, ptrPfx, varname, x.genTypeName(t))
}
}
// Should we create temp var if a slice/map indexing? No. dec(...) can now handle it.
if ptrPfx == "" {
x.dec(varname, t, true)
} else {
varname2 = genTempVarPfx + "z" + rand
x.line(varname2 + " := " + ptrPfx + varname)
x.dec(varname2, t, true)
}
}
}
// decVar takes a variable called varname, of type t
func (x *genRunner) decVar(varname, nilvar string, t reflect.Type, canBeNil, checkNotNil bool) {
// We only encode as nil if a nillable value.
// This removes some of the wasted checks for TryDecodeAsNil.
// We need to think about this more, to see what happens if omitempty, etc
// cause a nil value to be stored when something is expected.
// This could happen when decoding from a struct encoded as an array.
// For that, decVar should be called with canNil=true, to force true as its value.
i := x.varsfx()
if t.Kind() == reflect.Ptr {
var buf genBuf
x.decVarInitPtr(varname, nilvar, t, nil, nil, &buf)
x.linef("if r.TryNil() { %s } else {", buf.buf)
x.decVarMain(varname, i, t, checkNotNil)
x.line("} ")
} else {
x.decVarMain(varname, i, t, checkNotNil)
}
}
// dec will decode a variable (varname) of type t or ptrTo(t) if isptr==true.
func (x *genRunner) dec(varname string, t reflect.Type, isptr bool) {
// assumptions:
// - the varname is to a pointer already. No need to take address of it
// - t is always a baseType T (not a *T, etc).
rtid := rt2id(t)
ti2 := x.ti.get(rtid, t)
// check if
// - type is time.Time, Raw, RawExt
// - the type implements (Text|JSON|Binary)(Unm|M)arshal
mi := x.varsfx()
var hasIf genIfClause
defer hasIf.end(x)
var ptrPfx, addrPfx string
if isptr {
ptrPfx = "*"
} else {
addrPfx = "&"
}
if t == timeTyp {
x.linef("%s z.DecBasicHandle().TimeBuiltin() { %s%v = r.DecodeTime()", hasIf.c(false), ptrPfx, varname)
// return
}
if t == rawTyp {
x.linef("%s %s%v = z.DecRaw()", hasIf.c(true), ptrPfx, varname)
return
}
if t == rawExtTyp {
x.linef("%s r.DecodeExt(%s%v, 0, nil)", hasIf.c(true), addrPfx, varname)
return
}
// only check for extensions if extensions are configured,
// and the type is named, and has a packagePath,
// and this is not the CodecEncodeSelf or CodecDecodeSelf method (i.e. it is not a Selfer)
// xdebugf("genRunner.dec: varname: %v, t: %v, genImportPath: %v, t.Name: %v", varname, t, genImportPath(t), t.Name())
if !x.nx && varname != genTopLevelVarName && t != genStringDecAsBytesTyp &&
t != genStringDecZCTyp && genImportPath(t) != "" && t.Name() != "" {
// first check if extensions are configued, before doing the interface conversion
yy := fmt.Sprintf("%sxt%s", genTempVarPfx, mi)
x.linef("%s %s := z.Extension(%s); %s != nil { z.DecExtension(%s%s, %s) ", hasIf.c(false), yy, varname, yy, addrPfx, varname, yy)
}
if x.checkForSelfer(t, varname) {
if ti2.flagSelfer {
x.linef("%s %s.CodecDecodeSelf(d)", hasIf.c(true), varname)
return
}
if ti2.flagSelferPtr {
x.linef("%s %s.CodecDecodeSelf(d)", hasIf.c(true), varname)
return
}
if _, ok := x.td[rtid]; ok {
x.linef("%s %s.CodecDecodeSelf(d)", hasIf.c(true), varname)
return
}
}
inlist := false
for _, t0 := range x.t {
if t == t0 {
inlist = true
if x.checkForSelfer(t, varname) {
x.linef("%s %s.CodecDecodeSelf(d)", hasIf.c(true), varname)
return
}
break
}
}
var rtidAdded bool
if t == x.tc {
x.td[rtid] = true
rtidAdded = true
}
if ti2.flagBinaryUnmarshaler {
x.linef("%s z.DecBinary() { z.DecBinaryUnmarshal(%s%v) ", hasIf.c(false), ptrPfx, varname)
} else if ti2.flagBinaryUnmarshalerPtr {
x.linef("%s z.DecBinary() { z.DecBinaryUnmarshal(%s%v) ", hasIf.c(false), addrPfx, varname)
}
if ti2.flagJsonUnmarshaler {
x.linef("%s !z.DecBinary() && z.IsJSONHandle() { z.DecJSONUnmarshal(%s%v)", hasIf.c(false), ptrPfx, varname)
} else if ti2.flagJsonUnmarshalerPtr {
x.linef("%s !z.DecBinary() && z.IsJSONHandle() { z.DecJSONUnmarshal(%s%v)", hasIf.c(false), addrPfx, varname)
} else if ti2.flagTextUnmarshaler {
x.linef("%s !z.DecBinary() { z.DecTextUnmarshal(%s%v)", hasIf.c(false), ptrPfx, varname)
} else if ti2.flagTextUnmarshalerPtr {
x.linef("%s !z.DecBinary() { z.DecTextUnmarshal(%s%v)", hasIf.c(false), addrPfx, varname)
}
x.lineIf(hasIf.c(true))
if x.decTryAssignPrimitive(varname, t, isptr) {
return
}
switch t.Kind() {
case reflect.Chan:
x.xtraSM(varname, t, ti2, false, isptr)
case reflect.Array:
_, rtidu := genFastpathUnderlying(t, rtid, ti2)
if fastpathAvIndex(rtidu) != -1 {
g := x.newFastpathGenV(ti2.key)
x.linef("z.F.%sN((%s)(%s[:]), d)", g.MethodNamePfx("Dec", false), x.genTypeName(ti2.key), varname)
} else {
x.xtraSM(varname, t, ti2, false, isptr)
}
case reflect.Slice:
// if a []byte, call dedicated function
// if a known fastpath slice, call dedicated function
// else write encode function in-line.
// - if elements are primitives or Selfers, call dedicated function on each member.
// - else call Encoder.encode(XXX) on it.
if rtid == uint8SliceTypId {
x.linef("%s%s = z.DecodeBytesInto(%s(%s[]byte)(%s))", ptrPfx, varname, ptrPfx, ptrPfx, varname)
} else {
tu, rtidu := genFastpathUnderlying(t, rtid, ti2)
if fastpathAvIndex(rtidu) != -1 {
g := x.newFastpathGenV(tu)
if rtid == rtidu {
x.linef("z.F.%sX(%s%s, d)", g.MethodNamePfx("Dec", false), addrPfx, varname)
} else {
x.linef("z.F.%sX((*%s)(%s%s), d)", g.MethodNamePfx("Dec", false), x.genTypeName(tu), addrPfx, varname)
}
} else {
x.xtraSM(varname, t, ti2, false, isptr)
// x.decListFallback(varname, rtid, false, t)
}
}
case reflect.Map:
// if a known fastpath map, call dedicated function
// else write encode function in-line.
// - if elements are primitives or Selfers, call dedicated function on each member.
// - else call Encoder.encode(XXX) on it.
tu, rtidu := genFastpathUnderlying(t, rtid, ti2)
if fastpathAvIndex(rtidu) != -1 {
g := x.newFastpathGenV(tu)
if rtid == rtidu {
x.linef("z.F.%sX(%s%s, d)", g.MethodNamePfx("Dec", false), addrPfx, varname)
} else {
x.linef("z.F.%sX((*%s)(%s%s), d)", g.MethodNamePfx("Dec", false), x.genTypeName(tu), addrPfx, varname)
}
} else {
x.xtraSM(varname, t, ti2, false, isptr)
}
case reflect.Struct:
if inlist {
// no need to create temp variable if isptr, or x.F or x[F]
if isptr || strings.IndexByte(varname, '.') != -1 || strings.IndexByte(varname, '[') != -1 {
x.decStruct(varname, rtid, t)
} else {
varname2 := genTempVarPfx + "j" + mi
x.line(varname2 + " := &" + varname)
x.decStruct(varname2, rtid, t)
}
} else {
// delete(x.td, rtid)
x.line("z.DecFallback(" + addrPfx + varname + ", false)")
}
default:
if rtidAdded {
delete(x.te, rtid)
}
x.line("z.DecFallback(" + addrPfx + varname + ", true)")
}
}
func (x *genRunner) decTryAssignPrimitive(varname string, t reflect.Type, isptr bool) (done bool) {
// This should only be used for exact primitives (ie un-named types).
// Named types may be implementations of Selfer, Unmarshaler, etc.
// They should be handled by dec(...)
var ptr string
if isptr {
ptr = "*"
}
switch t.Kind() {
case reflect.Int:
x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), codecSelferBitsize%s))", ptr, varname, x.genTypeName(t), x.xs)
case reflect.Int8:
x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), 8))", ptr, varname, x.genTypeName(t))
case reflect.Int16:
x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), 16))", ptr, varname, x.genTypeName(t))
case reflect.Int32:
x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), 32))", ptr, varname, x.genTypeName(t))
case reflect.Int64:
x.linef("%s%s = (%s)(r.DecodeInt64())", ptr, varname, x.genTypeName(t))
case reflect.Uint:
x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), codecSelferBitsize%s))", ptr, varname, x.genTypeName(t), x.xs)
case reflect.Uint8:
x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), 8))", ptr, varname, x.genTypeName(t))
case reflect.Uint16:
x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), 16))", ptr, varname, x.genTypeName(t))
case reflect.Uint32:
x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), 32))", ptr, varname, x.genTypeName(t))
case reflect.Uint64:
x.linef("%s%s = (%s)(r.DecodeUint64())", ptr, varname, x.genTypeName(t))
case reflect.Uintptr:
x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), codecSelferBitsize%s))", ptr, varname, x.genTypeName(t), x.xs)
case reflect.Float32:
x.linef("%s%s = (%s)(z.DecDecodeFloat32())", ptr, varname, x.genTypeName(t))
case reflect.Float64:
x.linef("%s%s = (%s)(r.DecodeFloat64())", ptr, varname, x.genTypeName(t))
case reflect.Complex64:
x.linef("%s%s = (%s)(complex(z.DecDecodeFloat32(), 0))", ptr, varname, x.genTypeName(t))
case reflect.Complex128:
x.linef("%s%s = (%s)(complex(r.DecodeFloat64(), 0))", ptr, varname, x.genTypeName(t))
case reflect.Bool:
x.linef("%s%s = (%s)(r.DecodeBool())", ptr, varname, x.genTypeName(t))
case reflect.String:
if t == genStringDecAsBytesTyp {
x.linef("%s%s = r.DecodeStringAsBytes()", ptr, varname)
} else if t == genStringDecZCTyp {
x.linef("%s%s = (string)(z.DecStringZC(r.DecodeStringAsBytes()))", ptr, varname)
} else {
x.linef("%s%s = (%s)(z.DecStringZC(r.DecodeStringAsBytes()))", ptr, varname, x.genTypeName(t))
}
default:
return false
}
return true
}
func (x *genRunner) decListFallback(varname string, rtid uintptr, t reflect.Type) {
if t.AssignableTo(uint8SliceTyp) {
x.line("*" + varname + " = z.DecodeBytesInto(*((*[]byte)(" + varname + ")))")
return
}
if t.Kind() == reflect.Array && t.Elem().Kind() == reflect.Uint8 {
x.linef("r.DecodeBytes( ((*[%d]byte)(%s))[:])", t.Len(), varname)
return
}
type tstruc struct {
TempVar string
Sfx string
Rand string
Varname string
CTyp string
Typ string
Immutable bool
Size int
}
telem := t.Elem()
ts := tstruc{genTempVarPfx, x.xs, x.varsfx(), varname, x.genTypeName(t), x.genTypeName(telem), genIsImmutable(telem), int(telem.Size())}
funcs := make(template.FuncMap)
funcs["decLineVar"] = func(varname string) string {
x.decVar(varname, "", telem, false, true)
return ""
}
funcs["var"] = func(s string) string {
return ts.TempVar + s + ts.Rand
}
funcs["xs"] = func() string {
return ts.Sfx
}
funcs["zero"] = func() string {
return x.genZeroValueR(telem)
}
funcs["isArray"] = func() bool {
return t.Kind() == reflect.Array
}
funcs["isSlice"] = func() bool {
return t.Kind() == reflect.Slice
}
funcs["isChan"] = func() bool {
return t.Kind() == reflect.Chan
}
tm, err := template.New("").Funcs(funcs).Parse(genDecListTmpl)
genCheckErr(err)
genCheckErr(tm.Execute(x.w, &ts))
}
func (x *genRunner) decMapFallback(varname string, rtid uintptr, t reflect.Type) {
type tstruc struct {
TempVar string
Sfx string
Rand string
Varname string
KTyp string
Typ string
Size int
}
telem := t.Elem()
tkey := t.Key()
ts := tstruc{
genTempVarPfx, x.xs, x.varsfx(), varname, x.genTypeName(tkey),
x.genTypeName(telem), int(telem.Size() + tkey.Size()),
}
funcs := make(template.FuncMap)
funcs["decElemZero"] = func() string {
return x.genZeroValueR(telem)
}
funcs["decElemKindImmutable"] = func() bool {
return genIsImmutable(telem)
}
funcs["decElemKindPtr"] = func() bool {
return telem.Kind() == reflect.Ptr
}
funcs["decElemKindIntf"] = func() bool {
return telem.Kind() == reflect.Interface
}
funcs["decLineVarKStrBytes"] = func(varname string) string {
x.decVar(varname, "", genStringDecAsBytesTyp, false, true)
return ""
}
funcs["decLineVarKStrZC"] = func(varname string) string {
x.decVar(varname, "", genStringDecZCTyp, false, true)
return ""
}
funcs["decLineVarK"] = func(varname string) string {
x.decVar(varname, "", tkey, false, true)
return ""
}
funcs["decLineVar"] = func(varname, decodedNilVarname string) string {
x.decVar(varname, decodedNilVarname, telem, false, true)
return ""
}
funcs["var"] = func(s string) string {
return ts.TempVar + s + ts.Rand
}
funcs["xs"] = func() string {
return ts.Sfx
}
tm, err := template.New("").Funcs(funcs).Parse(genDecMapTmpl)
genCheckErr(err)
genCheckErr(tm.Execute(x.w, &ts))
}
func (x *genRunner) decStructMapSwitch(kName string, varname string, rtid uintptr, t reflect.Type) {
ti := x.ti.get(rtid, t)
tisfi := ti.sfi.source() // always use sequence from file. decStruct expects same thing.
x.line("switch string(" + kName + ") {")
var newbuf, nilbuf genBuf
for _, si := range tisfi {
x.line("case \"" + si.encName + "\":")
newbuf.reset()
nilbuf.reset()
varname3, t2 := x.decVarInitPtr(varname, "", t, si, &newbuf, &nilbuf)
if len(newbuf.buf) > 0 {
x.linef("if r.TryNil() { %s } else { %s", nilbuf.buf, newbuf.buf)
}
x.decVarMain(varname3, x.varsfx(), t2.Type, false)
if len(newbuf.buf) > 0 {
x.line("}")
}
}
x.line("default:")
// pass the slice here, so that the string will not escape, and maybe save allocation
x.linef("z.DecStructFieldNotFound(-1, string(%s))", kName)
x.linef("} // end switch %s", kName)
}
func (x *genRunner) decStructMap(varname, lenvarname string, rtid uintptr, t reflect.Type, style genStructMapStyle) {
tpfx := genTempVarPfx
ti := x.ti.get(rtid, t)
i := x.varsfx()
kName := tpfx + "s" + i
switch style {
case genStructMapStyleLenPrefix:
x.linef("for %sj%s := 0; %sj%s < %s; %sj%s++ {", tpfx, i, tpfx, i, lenvarname, tpfx, i)
case genStructMapStyleCheckBreak:
x.linef("for %sj%s := 0; !z.DecCheckBreak(); %sj%s++ {", tpfx, i, tpfx, i)
default: // 0, otherwise.
x.linef("var %shl%s bool = %s >= 0", tpfx, i, lenvarname) // has length
x.linef("for %sj%s := 0; ; %sj%s++ {", tpfx, i, tpfx, i)
x.linef("if %shl%s { if %sj%s >= %s { break }", tpfx, i, tpfx, i, lenvarname)
x.line("} else { if z.DecCheckBreak() { break }; }")
}
x.line("z.DecReadMapElemKey()")
// emulate decstructfieldkey
switch ti.keyType {
case valueTypeInt:
x.linef("%s := strconv.AppendInt(z.DecScratchArrayBuffer()[:0], r.DecodeInt64(), 10)", kName)
case valueTypeUint:
x.linef("%s := strconv.AppendUint(z.DecScratchArrayBuffer()[:0], r.DecodeUint64(), 10)", kName)
case valueTypeFloat:
x.linef("%s := strconv.AppendFloat(z.DecScratchArrayBuffer()[:0], r.DecodeFloat64(), 'f', -1, 64)", kName)
default: // string
x.linef("%s := r.DecodeStringAsBytes()", kName)
}
x.line("z.DecReadMapElemValue()")
x.decStructMapSwitch(kName, varname, rtid, t)
x.line("} // end for " + tpfx + "j" + i)
}
func (x *genRunner) decStructArray(varname, lenvarname, breakString string, rtid uintptr, t reflect.Type) {
tpfx := genTempVarPfx
i := x.varsfx()
ti := x.ti.get(rtid, t)
tisfi := ti.sfi.source() // always use sequence from file. decStruct expects same thing.
x.linef("var %sj%s int", tpfx, i)
x.linef("var %sb%s bool", tpfx, i) // break
x.linef("var %shl%s bool = %s >= 0", tpfx, i, lenvarname) // has length
if !genDecStructArrayInlineLoopCheck {
x.linef("var %sfn%s = func() bool { ", tpfx, i)
x.linef("%sj%s++; if %shl%s { %sb%s = %sj%s > %s } else { %sb%s = z.DecCheckBreak() };",
tpfx, i, tpfx, i, tpfx, i,
tpfx, i, lenvarname, tpfx, i)
x.linef("if %sb%s { z.DecReadArrayEnd(); return true }; return false", tpfx, i)
x.linef("} // end func %sfn%s", tpfx, i)
}
var newbuf, nilbuf genBuf
for _, si := range tisfi {
if genDecStructArrayInlineLoopCheck {
x.linef("%sj%s++; if %shl%s { %sb%s = %sj%s > %s } else { %sb%s = z.DecCheckBreak() }",
tpfx, i, tpfx, i, tpfx, i,
tpfx, i, lenvarname, tpfx, i)
x.linef("if %sb%s { z.DecReadArrayEnd(); %s }", tpfx, i, breakString)
} else {
x.linef("if %sfn%s() { %s }", tpfx, i, breakString)
}
x.line("z.DecReadArrayElem()")
newbuf.reset()
nilbuf.reset()
varname3, t2 := x.decVarInitPtr(varname, "", t, si, &newbuf, &nilbuf)
if len(newbuf.buf) > 0 {
x.linef("if r.TryNil() { %s } else { %s", nilbuf.buf, newbuf.buf)
}
x.decVarMain(varname3, x.varsfx(), t2.Type, false)
if len(newbuf.buf) > 0 {
x.line("}")
}
}
// read remaining values and throw away.
x.line("for {")
x.linef("%sj%s++; if %shl%s { %sb%s = %sj%s > %s } else { %sb%s = z.DecCheckBreak() }",
tpfx, i, tpfx, i, tpfx, i,
tpfx, i, lenvarname, tpfx, i)
x.linef("if %sb%s { break }", tpfx, i)
x.line("z.DecReadArrayElem()")
x.linef(`z.DecStructFieldNotFound(%sj%s - 1, "")`, tpfx, i)
x.line("}")
}
func (x *genRunner) decStruct(varname string, rtid uintptr, t reflect.Type) {
// varname MUST be a ptr, or a struct field or a slice element.
i := x.varsfx()
x.linef("%sct%s := r.ContainerType()", genTempVarPfx, i)
x.linef("if %sct%s == codecSelferValueTypeNil%s {", genTempVarPfx, i, x.xs)
x.linef("*(%s) = %s{}", varname, x.genTypeName(t))
x.linef("} else if %sct%s == codecSelferValueTypeMap%s {", genTempVarPfx, i, x.xs)
x.line(genTempVarPfx + "l" + i + " := z.DecReadMapStart()")
x.linef("if %sl%s == 0 {", genTempVarPfx, i)
if genUseOneFunctionForDecStructMap {
x.line("} else { ")
x.linef("%s.codecDecodeSelfFromMap(%sl%s, d)", varname, genTempVarPfx, i)
} else {
x.line("} else if " + genTempVarPfx + "l" + i + " > 0 { ")
x.line(varname + ".codecDecodeSelfFromMapLenPrefix(" + genTempVarPfx + "l" + i + ", d)")
x.line("} else {")
x.line(varname + ".codecDecodeSelfFromMapCheckBreak(" + genTempVarPfx + "l" + i + ", d)")
}
x.line("}")
x.line("z.DecReadMapEnd()")
// else if container is array
x.linef("} else if %sct%s == codecSelferValueTypeArray%s {", genTempVarPfx, i, x.xs)
x.line(genTempVarPfx + "l" + i + " := z.DecReadArrayStart()")
x.linef("if %sl%s != 0 {", genTempVarPfx, i)
x.linef("%s.codecDecodeSelfFromArray(%sl%s, d)", varname, genTempVarPfx, i)
x.line("}")
x.line("z.DecReadArrayEnd()")
// else panic
x.line("} else { ")
x.line("panic(errCodecSelferOnlyMapOrArrayEncodeToStruct" + x.xs + ")")
x.line("} ")
}
// --------
type fastpathGenV struct {
// fastpathGenV is either a primitive (Primitive != "") or a map (MapKey != "") or a slice
MapKey string
Elem string
Primitive string
Size int
NoCanonical bool
}
func (x *genRunner) newFastpathGenV(t reflect.Type) (v fastpathGenV) {
v.NoCanonical = !genFastpathCanonical
switch t.Kind() {
case reflect.Slice, reflect.Array:
te := t.Elem()
v.Elem = x.genTypeName(te)
v.Size = int(te.Size())
case reflect.Map:
te := t.Elem()
tk := t.Key()
v.Elem = x.genTypeName(te)
v.MapKey = x.genTypeName(tk)
v.Size = int(te.Size() + tk.Size())
default:
halt.onerror(errGenUnexpectedTypeFastpath)
}
return
}
func (x *fastpathGenV) MethodNamePfx(prefix string, prim bool) string {
var name []byte
if prefix != "" {
name = append(name, prefix...)
}
if prim {
name = append(name, genTitleCaseName(x.Primitive)...)
} else {
if x.MapKey == "" {
name = append(name, "Slice"...)
} else {
name = append(name, "Map"...)
name = append(name, genTitleCaseName(x.MapKey)...)
}
name = append(name, genTitleCaseName(x.Elem)...)
}
return string(name)
}
// genImportPath returns import path of a non-predeclared named typed, or an empty string otherwise.
//
// This handles the misbehaviour that occurs when 1.5-style vendoring is enabled,
// where PkgPath returns the full path, including the vendoring pre-fix that should have been stripped.
// We strip it here.
func genImportPath(t reflect.Type) (s string) {
s = t.PkgPath()
if genCheckVendor {
// HACK: always handle vendoring. It should be typically on in go 1.6, 1.7
s = genStripVendor(s)
}
return
}
// A go identifier is (letter|_)[letter|number|_]*
func genGoIdentifier(s string, checkFirstChar bool) string {
b := make([]byte, 0, len(s))
t := make([]byte, 4)
var n int
for i, r := range s {
if checkFirstChar && i == 0 && !unicode.IsLetter(r) {
b = append(b, '_')
}
// r must be unicode_letter, unicode_digit or _
if unicode.IsLetter(r) || unicode.IsDigit(r) {
n = utf8.EncodeRune(t, r)
b = append(b, t[:n]...)
} else {
b = append(b, '_')
}
}
return string(b)
}
func genNonPtr(t reflect.Type) reflect.Type {
for t.Kind() == reflect.Ptr {
t = t.Elem()
}
return t
}
func genFastpathUnderlying(t reflect.Type, rtid uintptr, ti *typeInfo) (tu reflect.Type, rtidu uintptr) {
tu = t
rtidu = rtid
if ti.flagHasPkgPath {
tu = ti.fastpathUnderlying
rtidu = rt2id(tu)
}
return
}
func genTitleCaseName(s string) string {
switch s {
case "interface{}", "interface {}":
return "Intf"
case "[]byte", "[]uint8", "bytes":
return "Bytes"
default:
return strings.ToUpper(s[0:1]) + s[1:]
}
}
func genMethodNameT(t reflect.Type, tRef reflect.Type) (n string) {
var ptrPfx string
for t.Kind() == reflect.Ptr {
ptrPfx += "Ptrto"
t = t.Elem()
}
tstr := t.String()
if tn := t.Name(); tn != "" {
if tRef != nil && genImportPath(t) == genImportPath(tRef) {
return ptrPfx + tn
} else {
if genQNameRegex.MatchString(tstr) {
return ptrPfx + strings.Replace(tstr, ".", "_", 1000)
} else {
return ptrPfx + genCustomTypeName(tstr)
}
}
}
switch t.Kind() {
case reflect.Map:
return ptrPfx + "Map" + genMethodNameT(t.Key(), tRef) + genMethodNameT(t.Elem(), tRef)
case reflect.Slice:
return ptrPfx + "Slice" + genMethodNameT(t.Elem(), tRef)
case reflect.Array:
return ptrPfx + "Array" + strconv.FormatInt(int64(t.Len()), 10) + genMethodNameT(t.Elem(), tRef)
case reflect.Chan:
var cx string
switch t.ChanDir() {
case reflect.SendDir:
cx = "ChanSend"
case reflect.RecvDir:
cx = "ChanRecv"
default:
cx = "Chan"
}
return ptrPfx + cx + genMethodNameT(t.Elem(), tRef)
default:
if t == intfTyp {
return ptrPfx + "Interface"
} else {
if tRef != nil && genImportPath(t) == genImportPath(tRef) {
if t.Name() != "" {
return ptrPfx + t.Name()
} else {
return ptrPfx + genCustomTypeName(tstr)
}
} else {
// best way to get the package name inclusive
// return ptrPfx + strings.Replace(tstr, ".", "_", 1000)
// return ptrPfx + genBase64enc.EncodeToString([]byte(tstr))
if t.Name() != "" && genQNameRegex.MatchString(tstr) {
return ptrPfx + strings.Replace(tstr, ".", "_", 1000)
} else {
return ptrPfx + genCustomTypeName(tstr)
}
}
}
}
}
// genCustomNameForType base64encodes the t.String() value in such a way
// that it can be used within a function name.
func genCustomTypeName(tstr string) string {
len2 := genBase64enc.EncodedLen(len(tstr))
bufx := make([]byte, len2)
genBase64enc.Encode(bufx, []byte(tstr))
for i := len2 - 1; i >= 0; i-- {
if bufx[i] == '=' {
len2--
} else {
break
}
}
return string(bufx[:len2])
}
func genIsImmutable(t reflect.Type) (v bool) {
return scalarBitset.isset(byte(t.Kind()))
}
type genInternal struct {
Version int
Values []fastpathGenV
Formats []string
}
func (x genInternal) FastpathLen() (l int) {
for _, v := range x.Values {
// if v.Primitive == "" && !(v.MapKey == "" && v.Elem == "uint8") {
if v.Primitive == "" {
l++
}
}
return
}
func genInternalZeroValue(s string) string {
switch s {
case "interface{}", "interface {}":
return "nil"
case "[]byte", "[]uint8", "bytes":
return "nil"
case "bool":
return "false"
case "string":
return `""`
default:
return "0"
}
}
var genInternalNonZeroValueIdx [6]uint64
var genInternalNonZeroValueStrs = [...][6]string{
{`"string-is-an-interface-1"`, "true", `"some-string-1"`, `[]byte("some-string-1")`, "11.1", "111"},
{`"string-is-an-interface-2"`, "false", `"some-string-2"`, `[]byte("some-string-2")`, "22.2", "77"},
{`"string-is-an-interface-3"`, "true", `"some-string-3"`, `[]byte("some-string-3")`, "33.3e3", "127"},
}
// Note: last numbers must be in range: 0-127 (as they may be put into a int8, uint8, etc)
func genInternalNonZeroValue(s string) string {
var i int
switch s {
case "interface{}", "interface {}":
i = 0
case "bool":
i = 1
case "string":
i = 2
case "bytes", "[]byte", "[]uint8":
i = 3
case "float32", "float64", "float", "double", "complex", "complex64", "complex128":
i = 4
default:
i = 5
}
genInternalNonZeroValueIdx[i]++
idx := genInternalNonZeroValueIdx[i]
slen := uint64(len(genInternalNonZeroValueStrs))
return genInternalNonZeroValueStrs[idx%slen][i] // return string, to remove ambiguity
}
// Note: used for fastpath only
func genInternalEncCommandAsString(s string, vname string) string {
switch s {
case "uint64":
return "e.e.EncodeUint(" + vname + ")"
case "uint", "uint8", "uint16", "uint32":
return "e.e.EncodeUint(uint64(" + vname + "))"
case "int64":
return "e.e.EncodeInt(" + vname + ")"
case "int", "int8", "int16", "int32":
return "e.e.EncodeInt(int64(" + vname + "))"
case "[]byte", "[]uint8", "bytes":
return "e.e.EncodeStringBytesRaw(" + vname + ")"
case "string":
return "e.e.EncodeString(" + vname + ")"
case "float32":
return "e.e.EncodeFloat32(" + vname + ")"
case "float64":
return "e.e.EncodeFloat64(" + vname + ")"
case "bool":
return "e.e.EncodeBool(" + vname + ")"
// case "symbol":
// return "e.e.EncodeSymbol(" + vname + ")"
default:
return "e.encode(" + vname + ")"
}
}
// Note: used for fastpath only
func genInternalDecCommandAsString(s string, mapkey bool) string {
switch s {
case "uint":
return "uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))"
case "uint8":
return "uint8(chkOvf.UintV(d.d.DecodeUint64(), 8))"
case "uint16":
return "uint16(chkOvf.UintV(d.d.DecodeUint64(), 16))"
case "uint32":
return "uint32(chkOvf.UintV(d.d.DecodeUint64(), 32))"
case "uint64":
return "d.d.DecodeUint64()"
case "uintptr":
return "uintptr(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))"
case "int":
return "int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize))"
case "int8":
return "int8(chkOvf.IntV(d.d.DecodeInt64(), 8))"
case "int16":
return "int16(chkOvf.IntV(d.d.DecodeInt64(), 16))"
case "int32":
return "int32(chkOvf.IntV(d.d.DecodeInt64(), 32))"
case "int64":
return "d.d.DecodeInt64()"
case "string":
// if mapkey {
// return "d.stringZC(d.d.DecodeStringAsBytes())"
// }
// return "string(d.d.DecodeStringAsBytes())"
return "d.stringZC(d.d.DecodeStringAsBytes())"
case "[]byte", "[]uint8", "bytes":
return "d.d.DecodeBytes([]byte{})"
case "float32":
return "float32(d.decodeFloat32())"
case "float64":
return "d.d.DecodeFloat64()"
case "complex64":
return "complex(d.decodeFloat32(), 0)"
case "complex128":
return "complex(d.d.DecodeFloat64(), 0)"
case "bool":
return "d.d.DecodeBool()"
default:
halt.onerror(errors.New("gen internal: unknown type for decode: " + s))
}
return ""
}
// func genInternalSortType(s string, elem bool) string {
// for _, v := range [...]string{
// "int",
// "uint",
// "float",
// "bool",
// "string",
// "bytes", "[]uint8", "[]byte",
// } {
// if v == "[]byte" || v == "[]uint8" {
// v = "bytes"
// }
// if strings.HasPrefix(s, v) {
// if v == "int" || v == "uint" || v == "float" {
// v += "64"
// }
// if elem {
// return v
// }
// return v + "Slice"
// }
// }
// halt.onerror(errors.New("sorttype: unexpected type: " + s))
// }
func genInternalSortType(s string, elem bool) string {
if elem {
return s
}
return s + "Slice"
}
// MARKER: keep in sync with codecgen/gen.go
func genStripVendor(s string) string {
// HACK: Misbehaviour occurs in go 1.5. May have to re-visit this later.
// if s contains /vendor/ OR startsWith vendor/, then return everything after it.
const vendorStart = "vendor/"
const vendorInline = "/vendor/"
if i := strings.LastIndex(s, vendorInline); i >= 0 {
s = s[i+len(vendorInline):]
} else if strings.HasPrefix(s, vendorStart) {
s = s[len(vendorStart):]
}
return s
}
// var genInternalMu sync.Mutex
var genInternalV = genInternal{Version: genVersion}
var genInternalTmplFuncs template.FuncMap
var genInternalOnce sync.Once
func genInternalInit() {
wordSizeBytes := int(intBitsize) / 8
typesizes := map[string]int{
"interface{}": 2 * wordSizeBytes,
"string": 2 * wordSizeBytes,
"[]byte": 3 * wordSizeBytes,
"uint": 1 * wordSizeBytes,
"uint8": 1,
"uint16": 2,
"uint32": 4,
"uint64": 8,
"uintptr": 1 * wordSizeBytes,
"int": 1 * wordSizeBytes,
"int8": 1,
"int16": 2,
"int32": 4,
"int64": 8,
"float32": 4,
"float64": 8,
"complex64": 8,
"complex128": 16,
"bool": 1,
}
// keep as slice, so it is in specific iteration order.
// Initial order was uint64, string, interface{}, int, int64, ...
var types = [...]string{
"interface{}",
"string",
"[]byte",
"float32",
"float64",
"uint",
"uint8",
"uint16",
"uint32",
"uint64",
"uintptr",
"int",
"int8",
"int16",
"int32",
"int64",
"bool",
}
var primitivetypes, slicetypes, mapkeytypes, mapvaltypes []string
primitivetypes = types[:]
slicetypes = types[:]
mapkeytypes = types[:]
mapvaltypes = types[:]
if genFastpathTrimTypes {
// Note: we only create fast-paths for commonly used types.
// Consequently, things like int8, uint16, uint, etc are commented out.
slicetypes = genInternalFastpathSliceTypes()
mapkeytypes = genInternalFastpathMapKeyTypes()
mapvaltypes = genInternalFastpathMapValueTypes()
}
// var mapkeytypes [len(&types) - 1]string // skip bool
// copy(mapkeytypes[:], types[:])
// var mb []byte
// mb = append(mb, '|')
// for _, s := range mapkeytypes {
// mb = append(mb, s...)
// mb = append(mb, '|')
// }
// var mapkeytypestr = string(mb)
var gt = genInternal{Version: genVersion, Formats: genFormats}
// For each slice or map type, there must be a (symmetrical) Encode and Decode fast-path function
for _, s := range primitivetypes {
gt.Values = append(gt.Values,
fastpathGenV{Primitive: s, Size: typesizes[s], NoCanonical: !genFastpathCanonical})
}
for _, s := range slicetypes {
// if s != "uint8" { // do not generate fast path for slice of bytes. Treat specially already.
// gt.Values = append(gt.Values, fastpathGenV{Elem: s, Size: typesizes[s]})
// }
gt.Values = append(gt.Values,
fastpathGenV{Elem: s, Size: typesizes[s], NoCanonical: !genFastpathCanonical})
}
for _, s := range mapkeytypes {
// if _, ok := typesizes[s]; !ok {
// if strings.Contains(mapkeytypestr, "|"+s+"|") {
// gt.Values = append(gt.Values, fastpathGenV{MapKey: s, Elem: s, Size: 2 * typesizes[s]})
// }
for _, ms := range mapvaltypes {
gt.Values = append(gt.Values,
fastpathGenV{MapKey: s, Elem: ms, Size: typesizes[s] + typesizes[ms], NoCanonical: !genFastpathCanonical})
}
}
funcs := make(template.FuncMap)
// funcs["haspfx"] = strings.HasPrefix
funcs["encmd"] = genInternalEncCommandAsString
funcs["decmd"] = genInternalDecCommandAsString
funcs["zerocmd"] = genInternalZeroValue
funcs["nonzerocmd"] = genInternalNonZeroValue
funcs["hasprefix"] = strings.HasPrefix
funcs["sorttype"] = genInternalSortType
genInternalV = gt
genInternalTmplFuncs = funcs
}
// genInternalGoFile is used to generate source files from templates.
func genInternalGoFile(r io.Reader, w io.Writer) (err error) {
genInternalOnce.Do(genInternalInit)
gt := genInternalV
t := template.New("").Funcs(genInternalTmplFuncs)
tmplstr, err := ioutil.ReadAll(r)
if err != nil {
return
}
if t, err = t.Parse(string(tmplstr)); err != nil {
return
}
var out bytes.Buffer
err = t.Execute(&out, gt)
if err != nil {
return
}
bout, err := format.Source(out.Bytes())
if err != nil {
w.Write(out.Bytes()) // write out if error, so we can still see.
// w.Write(bout) // write out if error, as much as possible, so we can still see.
return
}
w.Write(bout)
return
}
func genInternalFastpathSliceTypes() []string {
return []string{
"interface{}",
"string",
"[]byte",
"float32",
"float64",
// "uint",
// "uint8", // no need for fastpath of []uint8, as it is handled specially
"uint8", // keep fast-path, so it doesn't have to go through reflection
// "uint16",
// "uint32",
"uint64",
// "uintptr",
"int",
// "int8",
// "int16",
"int32", // rune
"int64",
"bool",
}
}
func genInternalFastpathMapKeyTypes() []string {
return []string{
// "interface{}",
"string",
// "[]byte",
// "float32",
// "float64",
// "uint",
"uint8", // byte
// "uint16",
// "uint32",
"uint64", // used for keys
// "uintptr",
"int", // default number key
// "int8",
// "int16",
"int32", // rune
// "int64",
// "bool",
}
}
func genInternalFastpathMapValueTypes() []string {
return []string{
"interface{}",
"string",
"[]byte",
// "uint",
"uint8", // byte
// "uint16",
// "uint32",
"uint64", // used for keys, etc
// "uintptr",
"int", // default number
//"int8",
// "int16",
"int32", // rune (mostly used for unicode)
// "int64",
// "float32",
"float64",
"bool",
}
}
// sort-slice ...
// generates sort implementations for
// various slice types and combination slice+reflect.Value types.
//
// The combination slice+reflect.Value types are used
// during canonical encode, and the others are used during fast-path
// encoding of map keys.
// genInternalSortableTypes returns the types
// that are used for fast-path canonical's encoding of maps.
//
// For now, we only support the highest sizes for
// int64, uint64, float64, bool, string, bytes.
func genInternalSortableTypes() []string {
return genInternalFastpathMapKeyTypes()
}
// genInternalSortablePlusTypes returns the types
// that are used for reflection-based canonical's encoding of maps.
//
// For now, we only support the highest sizes for
// int64, uint64, float64, bool, string, bytes.
func genInternalSortablePlusTypes() []string {
return []string{
"string",
"float64",
"uint64",
// "uintptr",
"int64",
"bool",
"time",
"bytes",
}
}
func genTypeForShortName(s string) string {
switch s {
case "time":
return "time.Time"
case "bytes":
return "[]byte"
}
return s
}
func genArgs(args ...interface{}) map[string]interface{} {
m := make(map[string]interface{}, len(args)/2)
for i := 0; i < len(args); {
m[args[i].(string)] = args[i+1]
i += 2
}
return m
}
func genEndsWith(s0 string, sn ...string) bool {
for _, s := range sn {
if strings.HasSuffix(s0, s) {
return true
}
}
return false
}
func genCheckErr(err error) {
halt.onerror(err)
}
func genRunSortTmpl2Go(fnameIn, fnameOut string) {
var err error
funcs := make(template.FuncMap)
funcs["sortables"] = genInternalSortableTypes
funcs["sortablesplus"] = genInternalSortablePlusTypes
funcs["tshort"] = genTypeForShortName
funcs["endswith"] = genEndsWith
funcs["args"] = genArgs
t := template.New("").Funcs(funcs)
fin, err := os.Open(fnameIn)
genCheckErr(err)
defer fin.Close()
fout, err := os.Create(fnameOut)
genCheckErr(err)
defer fout.Close()
tmplstr, err := ioutil.ReadAll(fin)
genCheckErr(err)
t, err = t.Parse(string(tmplstr))
genCheckErr(err)
var out bytes.Buffer
err = t.Execute(&out, 0)
genCheckErr(err)
bout, err := format.Source(out.Bytes())
if err != nil {
fout.Write(out.Bytes()) // write out if error, so we can still see.
}
genCheckErr(err)
// write out if error, as much as possible, so we can still see.
_, err = fout.Write(bout)
genCheckErr(err)
}
func genRunTmpl2Go(fnameIn, fnameOut string) {
// println("____ " + fnameIn + " --> " + fnameOut + " ______")
fin, err := os.Open(fnameIn)
genCheckErr(err)
defer fin.Close()
fout, err := os.Create(fnameOut)
genCheckErr(err)
defer fout.Close()
err = genInternalGoFile(fin, fout)
genCheckErr(err)
}
// --- some methods here for other types, which are only used in codecgen
// depth returns number of valid nodes in the hierachy
func (path *structFieldInfoPathNode) root() *structFieldInfoPathNode {
TOP:
if path.parent != nil {
path = path.parent
goto TOP
}
return path
}
func (path *structFieldInfoPathNode) fullpath() (p []*structFieldInfoPathNode) {
// this method is mostly called by a command-line tool - it's not optimized, and that's ok.
// it shouldn't be used in typical runtime use - as it does unnecessary allocation.
d := path.depth()
p = make([]*structFieldInfoPathNode, d)
for d--; d >= 0; d-- {
p[d] = path
path = path.parent
}
return
}