mirror of
1
Fork 0
gotosocial/vendor/github.com/klauspost/compress/zstd/dict.go

566 lines
13 KiB
Go
Raw Normal View History

package zstd
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"sort"
"github.com/klauspost/compress/huff0"
)
type dict struct {
id uint32
litEnc *huff0.Scratch
llDec, ofDec, mlDec sequenceDec
offsets [3]int
content []byte
}
const dictMagic = "\x37\xa4\x30\xec"
// Maximum dictionary size for the reference implementation (1.5.3) is 2 GiB.
const dictMaxLength = 1 << 31
// ID returns the dictionary id or 0 if d is nil.
func (d *dict) ID() uint32 {
if d == nil {
return 0
}
return d.id
}
// ContentSize returns the dictionary content size or 0 if d is nil.
func (d *dict) ContentSize() int {
if d == nil {
return 0
}
return len(d.content)
}
// Content returns the dictionary content.
func (d *dict) Content() []byte {
if d == nil {
return nil
}
return d.content
}
// Offsets returns the initial offsets.
func (d *dict) Offsets() [3]int {
if d == nil {
return [3]int{}
}
return d.offsets
}
// LitEncoder returns the literal encoder.
func (d *dict) LitEncoder() *huff0.Scratch {
if d == nil {
return nil
}
return d.litEnc
}
// Load a dictionary as described in
// https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#dictionary-format
func loadDict(b []byte) (*dict, error) {
// Check static field size.
if len(b) <= 8+(3*4) {
return nil, io.ErrUnexpectedEOF
}
d := dict{
llDec: sequenceDec{fse: &fseDecoder{}},
ofDec: sequenceDec{fse: &fseDecoder{}},
mlDec: sequenceDec{fse: &fseDecoder{}},
}
if string(b[:4]) != dictMagic {
return nil, ErrMagicMismatch
}
d.id = binary.LittleEndian.Uint32(b[4:8])
if d.id == 0 {
return nil, errors.New("dictionaries cannot have ID 0")
}
// Read literal table
var err error
d.litEnc, b, err = huff0.ReadTable(b[8:], nil)
if err != nil {
return nil, fmt.Errorf("loading literal table: %w", err)
}
d.litEnc.Reuse = huff0.ReusePolicyMust
br := byteReader{
b: b,
off: 0,
}
readDec := func(i tableIndex, dec *fseDecoder) error {
if err := dec.readNCount(&br, uint16(maxTableSymbol[i])); err != nil {
return err
}
if br.overread() {
return io.ErrUnexpectedEOF
}
err = dec.transform(symbolTableX[i])
if err != nil {
println("Transform table error:", err)
return err
}
if debugDecoder || debugEncoder {
println("Read table ok", "symbolLen:", dec.symbolLen)
}
// Set decoders as predefined so they aren't reused.
dec.preDefined = true
return nil
}
if err := readDec(tableOffsets, d.ofDec.fse); err != nil {
return nil, err
}
if err := readDec(tableMatchLengths, d.mlDec.fse); err != nil {
return nil, err
}
if err := readDec(tableLiteralLengths, d.llDec.fse); err != nil {
return nil, err
}
if br.remain() < 12 {
return nil, io.ErrUnexpectedEOF
}
d.offsets[0] = int(br.Uint32())
br.advance(4)
d.offsets[1] = int(br.Uint32())
br.advance(4)
d.offsets[2] = int(br.Uint32())
br.advance(4)
if d.offsets[0] <= 0 || d.offsets[1] <= 0 || d.offsets[2] <= 0 {
return nil, errors.New("invalid offset in dictionary")
}
d.content = make([]byte, br.remain())
copy(d.content, br.unread())
if d.offsets[0] > len(d.content) || d.offsets[1] > len(d.content) || d.offsets[2] > len(d.content) {
return nil, fmt.Errorf("initial offset bigger than dictionary content size %d, offsets: %v", len(d.content), d.offsets)
}
return &d, nil
}
// InspectDictionary loads a zstd dictionary and provides functions to inspect the content.
func InspectDictionary(b []byte) (interface {
ID() uint32
ContentSize() int
Content() []byte
Offsets() [3]int
LitEncoder() *huff0.Scratch
}, error) {
initPredefined()
d, err := loadDict(b)
return d, err
}
type BuildDictOptions struct {
// Dictionary ID.
ID uint32
// Content to use to create dictionary tables.
Contents [][]byte
// History to use for all blocks.
History []byte
// Offsets to use.
Offsets [3]int
// CompatV155 will make the dictionary compatible with Zstd v1.5.5 and earlier.
// See https://github.com/facebook/zstd/issues/3724
CompatV155 bool
// Use the specified encoder level.
// The dictionary will be built using the specified encoder level,
// which will reflect speed and make the dictionary tailored for that level.
// If not set SpeedBestCompression will be used.
Level EncoderLevel
// DebugOut will write stats and other details here if set.
DebugOut io.Writer
}
func BuildDict(o BuildDictOptions) ([]byte, error) {
initPredefined()
hist := o.History
contents := o.Contents
debug := o.DebugOut != nil
println := func(args ...interface{}) {
if o.DebugOut != nil {
fmt.Fprintln(o.DebugOut, args...)
}
}
printf := func(s string, args ...interface{}) {
if o.DebugOut != nil {
fmt.Fprintf(o.DebugOut, s, args...)
}
}
print := func(args ...interface{}) {
if o.DebugOut != nil {
fmt.Fprint(o.DebugOut, args...)
}
}
if int64(len(hist)) > dictMaxLength {
return nil, fmt.Errorf("dictionary of size %d > %d", len(hist), int64(dictMaxLength))
}
if len(hist) < 8 {
return nil, fmt.Errorf("dictionary of size %d < %d", len(hist), 8)
}
if len(contents) == 0 {
return nil, errors.New("no content provided")
}
d := dict{
id: o.ID,
litEnc: nil,
llDec: sequenceDec{},
ofDec: sequenceDec{},
mlDec: sequenceDec{},
offsets: o.Offsets,
content: hist,
}
block := blockEnc{lowMem: false}
block.init()
enc := encoder(&bestFastEncoder{fastBase: fastBase{maxMatchOff: int32(maxMatchLen), bufferReset: math.MaxInt32 - int32(maxMatchLen*2), lowMem: false}})
if o.Level != 0 {
eOpts := encoderOptions{
level: o.Level,
blockSize: maxMatchLen,
windowSize: maxMatchLen,
dict: &d,
lowMem: false,
}
enc = eOpts.encoder()
} else {
o.Level = SpeedBestCompression
}
var (
remain [256]int
ll [256]int
ml [256]int
of [256]int
)
addValues := func(dst *[256]int, src []byte) {
for _, v := range src {
dst[v]++
}
}
addHist := func(dst *[256]int, src *[256]uint32) {
for i, v := range src {
dst[i] += int(v)
}
}
seqs := 0
nUsed := 0
litTotal := 0
newOffsets := make(map[uint32]int, 1000)
for _, b := range contents {
block.reset(nil)
if len(b) < 8 {
continue
}
nUsed++
enc.Reset(&d, true)
enc.Encode(&block, b)
addValues(&remain, block.literals)
litTotal += len(block.literals)
if len(block.sequences) == 0 {
continue
}
seqs += len(block.sequences)
block.genCodes()
addHist(&ll, block.coders.llEnc.Histogram())
addHist(&ml, block.coders.mlEnc.Histogram())
addHist(&of, block.coders.ofEnc.Histogram())
for i, seq := range block.sequences {
if i > 3 {
break
}
offset := seq.offset
if offset == 0 {
continue
}
if int(offset) >= len(o.History) {
continue
}
if offset > 3 {
newOffsets[offset-3]++
} else {
newOffsets[uint32(o.Offsets[offset-1])]++
}
}
}
// Find most used offsets.
var sortedOffsets []uint32
for k := range newOffsets {
sortedOffsets = append(sortedOffsets, k)
}
sort.Slice(sortedOffsets, func(i, j int) bool {
a, b := sortedOffsets[i], sortedOffsets[j]
if a == b {
// Prefer the longer offset
return sortedOffsets[i] > sortedOffsets[j]
}
return newOffsets[sortedOffsets[i]] > newOffsets[sortedOffsets[j]]
})
if len(sortedOffsets) > 3 {
if debug {
print("Offsets:")
for i, v := range sortedOffsets {
if i > 20 {
break
}
printf("[%d: %d],", v, newOffsets[v])
}
println("")
}
sortedOffsets = sortedOffsets[:3]
}
for i, v := range sortedOffsets {
o.Offsets[i] = int(v)
}
if debug {
println("New repeat offsets", o.Offsets)
}
if nUsed == 0 || seqs == 0 {
return nil, fmt.Errorf("%d blocks, %d sequences found", nUsed, seqs)
}
if debug {
println("Sequences:", seqs, "Blocks:", nUsed, "Literals:", litTotal)
}
if seqs/nUsed < 512 {
// Use 512 as minimum.
nUsed = seqs / 512
if nUsed == 0 {
nUsed = 1
}
}
copyHist := func(dst *fseEncoder, src *[256]int) ([]byte, error) {
hist := dst.Histogram()
var maxSym uint8
var maxCount int
var fakeLength int
for i, v := range src {
if v > 0 {
v = v / nUsed
if v == 0 {
v = 1
}
}
if v > maxCount {
maxCount = v
}
if v != 0 {
maxSym = uint8(i)
}
fakeLength += v
hist[i] = uint32(v)
}
// Ensure we aren't trying to represent RLE.
if maxCount == fakeLength {
for i := range hist {
if uint8(i) == maxSym {
fakeLength++
maxSym++
hist[i+1] = 1
if maxSym > 1 {
break
}
}
if hist[0] == 0 {
fakeLength++
hist[i] = 1
if maxSym > 1 {
break
}
}
}
}
dst.HistogramFinished(maxSym, maxCount)
dst.reUsed = false
dst.useRLE = false
err := dst.normalizeCount(fakeLength)
if err != nil {
return nil, err
}
if debug {
println("RAW:", dst.count[:maxSym+1], "NORM:", dst.norm[:maxSym+1], "LEN:", fakeLength)
}
return dst.writeCount(nil)
}
if debug {
print("Literal lengths: ")
}
llTable, err := copyHist(block.coders.llEnc, &ll)
if err != nil {
return nil, err
}
if debug {
print("Match lengths: ")
}
mlTable, err := copyHist(block.coders.mlEnc, &ml)
if err != nil {
return nil, err
}
if debug {
print("Offsets: ")
}
ofTable, err := copyHist(block.coders.ofEnc, &of)
if err != nil {
return nil, err
}
// Literal table
avgSize := litTotal
if avgSize > huff0.BlockSizeMax/2 {
avgSize = huff0.BlockSizeMax / 2
}
huffBuff := make([]byte, 0, avgSize)
// Target size
div := litTotal / avgSize
if div < 1 {
div = 1
}
if debug {
println("Huffman weights:")
}
for i, n := range remain[:] {
if n > 0 {
n = n / div
// Allow all entries to be represented.
if n == 0 {
n = 1
}
huffBuff = append(huffBuff, bytes.Repeat([]byte{byte(i)}, n)...)
if debug {
printf("[%d: %d], ", i, n)
}
}
}
if o.CompatV155 && remain[255]/div == 0 {
huffBuff = append(huffBuff, 255)
}
scratch := &huff0.Scratch{TableLog: 11}
for tries := 0; tries < 255; tries++ {
scratch = &huff0.Scratch{TableLog: 11}
_, _, err = huff0.Compress1X(huffBuff, scratch)
if err == nil {
break
}
if debug {
printf("Try %d: Huffman error: %v\n", tries+1, err)
}
huffBuff = huffBuff[:0]
if tries == 250 {
if debug {
println("Huffman: Bailing out with predefined table")
}
// Bail out.... Just generate something
huffBuff = append(huffBuff, bytes.Repeat([]byte{255}, 10000)...)
for i := 0; i < 128; i++ {
huffBuff = append(huffBuff, byte(i))
}
continue
}
if errors.Is(err, huff0.ErrIncompressible) {
// Try truncating least common.
for i, n := range remain[:] {
if n > 0 {
n = n / (div * (i + 1))
if n > 0 {
huffBuff = append(huffBuff, bytes.Repeat([]byte{byte(i)}, n)...)
}
}
}
if o.CompatV155 && len(huffBuff) > 0 && huffBuff[len(huffBuff)-1] != 255 {
huffBuff = append(huffBuff, 255)
}
if len(huffBuff) == 0 {
huffBuff = append(huffBuff, 0, 255)
}
}
if errors.Is(err, huff0.ErrUseRLE) {
for i, n := range remain[:] {
n = n / (div * (i + 1))
// Allow all entries to be represented.
if n == 0 {
n = 1
}
huffBuff = append(huffBuff, bytes.Repeat([]byte{byte(i)}, n)...)
}
}
}
var out bytes.Buffer
out.Write([]byte(dictMagic))
out.Write(binary.LittleEndian.AppendUint32(nil, o.ID))
out.Write(scratch.OutTable)
if debug {
println("huff table:", len(scratch.OutTable), "bytes")
println("of table:", len(ofTable), "bytes")
println("ml table:", len(mlTable), "bytes")
println("ll table:", len(llTable), "bytes")
}
out.Write(ofTable)
out.Write(mlTable)
out.Write(llTable)
out.Write(binary.LittleEndian.AppendUint32(nil, uint32(o.Offsets[0])))
out.Write(binary.LittleEndian.AppendUint32(nil, uint32(o.Offsets[1])))
out.Write(binary.LittleEndian.AppendUint32(nil, uint32(o.Offsets[2])))
out.Write(hist)
if debug {
_, err := loadDict(out.Bytes())
if err != nil {
panic(err)
}
i, err := InspectDictionary(out.Bytes())
if err != nil {
panic(err)
}
println("ID:", i.ID())
println("Content size:", i.ContentSize())
println("Encoder:", i.LitEncoder() != nil)
println("Offsets:", i.Offsets())
var totalSize int
for _, b := range contents {
totalSize += len(b)
}
encWith := func(opts ...EOption) int {
enc, err := NewWriter(nil, opts...)
if err != nil {
panic(err)
}
defer enc.Close()
var dst []byte
var totalSize int
for _, b := range contents {
dst = enc.EncodeAll(b, dst[:0])
totalSize += len(dst)
}
return totalSize
}
plain := encWith(WithEncoderLevel(o.Level))
withDict := encWith(WithEncoderLevel(o.Level), WithEncoderDict(out.Bytes()))
println("Input size:", totalSize)
println("Plain Compressed:", plain)
println("Dict Compressed:", withDict)
println("Saved:", plain-withDict, (plain-withDict)/len(contents), "bytes per input (rounded down)")
}
return out.Bytes(), nil
}