mirror of
1
Fork 0
gotosocial/vendor/github.com/golang/geo/s2/latlng.go

102 lines
3.4 KiB
Go
Raw Normal View History

// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package s2
import (
"fmt"
"math"
"github.com/golang/geo/r3"
"github.com/golang/geo/s1"
)
const (
northPoleLat = s1.Angle(math.Pi/2) * s1.Radian
southPoleLat = -northPoleLat
)
// LatLng represents a point on the unit sphere as a pair of angles.
type LatLng struct {
Lat, Lng s1.Angle
}
// LatLngFromDegrees returns a LatLng for the coordinates given in degrees.
func LatLngFromDegrees(lat, lng float64) LatLng {
return LatLng{s1.Angle(lat) * s1.Degree, s1.Angle(lng) * s1.Degree}
}
// IsValid returns true iff the LatLng is normalized, with Lat ∈ [-π/2,π/2] and Lng ∈ [-π,π].
func (ll LatLng) IsValid() bool {
return math.Abs(ll.Lat.Radians()) <= math.Pi/2 && math.Abs(ll.Lng.Radians()) <= math.Pi
}
// Normalized returns the normalized version of the LatLng,
// with Lat clamped to [-π/2,π/2] and Lng wrapped in [-π,π].
func (ll LatLng) Normalized() LatLng {
lat := ll.Lat
if lat > northPoleLat {
lat = northPoleLat
} else if lat < southPoleLat {
lat = southPoleLat
}
lng := s1.Angle(math.Remainder(ll.Lng.Radians(), 2*math.Pi)) * s1.Radian
return LatLng{lat, lng}
}
func (ll LatLng) String() string { return fmt.Sprintf("[%v, %v]", ll.Lat, ll.Lng) }
// Distance returns the angle between two LatLngs.
func (ll LatLng) Distance(ll2 LatLng) s1.Angle {
// Haversine formula, as used in C++ S2LatLng::GetDistance.
lat1, lat2 := ll.Lat.Radians(), ll2.Lat.Radians()
lng1, lng2 := ll.Lng.Radians(), ll2.Lng.Radians()
dlat := math.Sin(0.5 * (lat2 - lat1))
dlng := math.Sin(0.5 * (lng2 - lng1))
x := dlat*dlat + dlng*dlng*math.Cos(lat1)*math.Cos(lat2)
return s1.Angle(2*math.Atan2(math.Sqrt(x), math.Sqrt(math.Max(0, 1-x)))) * s1.Radian
}
// NOTE(mikeperrow): The C++ implementation publicly exposes latitude/longitude
// functions. Let's see if that's really necessary before exposing the same functionality.
func latitude(p Point) s1.Angle {
return s1.Angle(math.Atan2(p.Z, math.Sqrt(p.X*p.X+p.Y*p.Y))) * s1.Radian
}
func longitude(p Point) s1.Angle {
return s1.Angle(math.Atan2(p.Y, p.X)) * s1.Radian
}
// PointFromLatLng returns an Point for the given LatLng.
// The maximum error in the result is 1.5 * dblEpsilon. (This does not
// include the error of converting degrees, E5, E6, or E7 into radians.)
func PointFromLatLng(ll LatLng) Point {
phi := ll.Lat.Radians()
theta := ll.Lng.Radians()
cosphi := math.Cos(phi)
return Point{r3.Vector{math.Cos(theta) * cosphi, math.Sin(theta) * cosphi, math.Sin(phi)}}
}
// LatLngFromPoint returns an LatLng for a given Point.
func LatLngFromPoint(p Point) LatLng {
return LatLng{latitude(p), longitude(p)}
}
// ApproxEqual reports whether the latitude and longitude of the two LatLngs
// are the same up to a small tolerance.
func (ll LatLng) ApproxEqual(other LatLng) bool {
return ll.Lat.ApproxEqual(other.Lat) && ll.Lng.ApproxEqual(other.Lng)
}