mirror of
1
Fork 0

[chore] bump gruf/go-store to v2 (#953)

* [chore] bump gruf/go-store to v2

* no more boobs
This commit is contained in:
tobi 2022-11-05 12:10:19 +01:00 committed by GitHub
parent a9addb59b6
commit bcb80d3ff4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
105 changed files with 12360 additions and 4859 deletions

6
go.mod
View File

@ -12,7 +12,7 @@ require (
codeberg.org/gruf/go-logger/v2 v2.2.1
codeberg.org/gruf/go-mutexes v1.1.2
codeberg.org/gruf/go-runners v1.3.1
codeberg.org/gruf/go-store v1.3.8
codeberg.org/gruf/go-store/v2 v2.0.3
github.com/buckket/go-blurhash v1.1.0
github.com/coreos/go-oidc/v3 v3.4.0
github.com/disintegration/imaging v1.6.2
@ -30,7 +30,7 @@ require (
github.com/jackc/pgx/v4 v4.17.2
github.com/microcosm-cc/bluemonday v1.0.20
github.com/miekg/dns v1.1.50
github.com/minio/minio-go/v7 v7.0.36
github.com/minio/minio-go/v7 v7.0.37
github.com/mitchellh/mapstructure v1.5.0
github.com/oklog/ulid v1.3.1
github.com/robfig/cron/v3 v3.0.1
@ -67,6 +67,7 @@ require (
codeberg.org/gruf/go-pools v1.1.0 // indirect
codeberg.org/gruf/go-sched v1.1.1 // indirect
github.com/aymerick/douceur v0.2.0 // indirect
github.com/cornelk/hashmap v1.0.8 // indirect
github.com/davecgh/go-spew v1.1.1 // indirect
github.com/dsoprea/go-exif/v3 v3.0.0-20210625224831-a6301f85c82b // indirect
github.com/dsoprea/go-iptc v0.0.0-20200610044640-bc9ca208b413 // indirect
@ -85,7 +86,6 @@ require (
github.com/golang-jwt/jwt v3.2.2+incompatible // indirect
github.com/golang/geo v0.0.0-20210211234256-740aa86cb551 // indirect
github.com/golang/protobuf v1.5.2 // indirect
github.com/golang/snappy v0.0.4 // indirect
github.com/gorilla/context v1.1.1 // indirect
github.com/gorilla/css v1.0.0 // indirect
github.com/gorilla/securecookie v1.1.1 // indirect

19
go.sum
View File

@ -69,7 +69,6 @@ codeberg.org/gruf/go-bytesize v1.0.0/go.mod h1:n/GU8HzL9f3UNp/mUKyr1qVmTlj7+xacp
codeberg.org/gruf/go-byteutil v1.0.0/go.mod h1:cWM3tgMCroSzqoBXUXMhvxTxYJp+TbCr6ioISRY5vSU=
codeberg.org/gruf/go-byteutil v1.0.2 h1:OesVyK5VKWeWdeDR00zRJ+Oy8hjXx1pBhn7WVvcZWVE=
codeberg.org/gruf/go-byteutil v1.0.2/go.mod h1:cWM3tgMCroSzqoBXUXMhvxTxYJp+TbCr6ioISRY5vSU=
codeberg.org/gruf/go-cache v1.1.2/go.mod h1:/Dbc+xU72Op3hMn6x2PXF3NE9uIDFeS+sXPF00hN/7o=
codeberg.org/gruf/go-cache/v2 v2.1.4 h1:r+6wJiTHZn0qqf+p1VtAjGOgXXJl7s8txhPIwoSMZtI=
codeberg.org/gruf/go-cache/v2 v2.1.4/go.mod h1:j7teiz814lG0PfSfnUs+6HA+2/jcjTAR71Ou3Wbt2Xk=
codeberg.org/gruf/go-debug v1.2.0 h1:WBbTMnK1ArFKUmgv04aO2JiC/daTOB8zQGi521qb7OU=
@ -90,18 +89,16 @@ codeberg.org/gruf/go-logger/v2 v2.2.1 h1:RP2u059EQKTBFV3cN8X6xDxNk2RkzqdgXGKflKq
codeberg.org/gruf/go-logger/v2 v2.2.1/go.mod h1:m/vBfG5jNUmYXI8Hg9aVSk7Pn8YgEBITQB/B/CzdRss=
codeberg.org/gruf/go-mutexes v1.1.2 h1:AMC1CFV6kMi+iBjR3yQv8yIagG3lWm68U6sQHYFHEf4=
codeberg.org/gruf/go-mutexes v1.1.2/go.mod h1:1j/6/MBeBQUedAtAtysLLnBKogfOZAxdym0E3wlaBD8=
codeberg.org/gruf/go-nowish v1.0.0/go.mod h1:70nvICNcqQ9OHpF07N614Dyk7cpL5ToWU1K1ZVCec2s=
codeberg.org/gruf/go-nowish v1.1.2/go.mod h1:70nvICNcqQ9OHpF07N614Dyk7cpL5ToWU1K1ZVCec2s=
codeberg.org/gruf/go-pools v1.1.0 h1:LbYP24eQLl/YI1fSU2pafiwhGol1Z1zPjRrMsXpF88s=
codeberg.org/gruf/go-pools v1.1.0/go.mod h1:ZMYpt/DjQWYC3zFD3T97QWSFKs62zAUGJ/tzvgB9D68=
codeberg.org/gruf/go-runners v1.1.1/go.mod h1:9gTrmMnO3d+50C+hVzcmGBf+zTuswReS278E2EMvnmw=
codeberg.org/gruf/go-runners v1.2.1/go.mod h1:9gTrmMnO3d+50C+hVzcmGBf+zTuswReS278E2EMvnmw=
codeberg.org/gruf/go-runners v1.3.1 h1:d/OQMMMiA6yPaDSbSr0/Jc+lucWmm7AiAZjWffpNKVQ=
codeberg.org/gruf/go-runners v1.3.1/go.mod h1:rl0EdZNozkRMb21DAtOL5L4oTfmslYQdZgq2RMMc/H4=
codeberg.org/gruf/go-sched v1.1.1 h1:YtLSQhpypzuD3HTup5oF7LLWB79gTL4nqW06kH4Vwks=
codeberg.org/gruf/go-sched v1.1.1/go.mod h1:SRcdP/5qim+EBT3n3r4aUra1C30yPqV4OJOXuqvgdQM=
codeberg.org/gruf/go-store v1.3.8 h1:7Hzzsa8gaOc6spuGWXJVUWRAyKiOR/m60/jNYrD8cT0=
codeberg.org/gruf/go-store v1.3.8/go.mod h1:Fy5pXEHiIVFRWDx8DfILwXS1ulrj/jLdSK2C2oElz3I=
codeberg.org/gruf/go-store/v2 v2.0.2 h1:SZiEchrX9BCLr++dlz21XnoCEZi9u4j/svNQ/FDqC7s=
codeberg.org/gruf/go-store/v2 v2.0.2/go.mod h1:bgHRkBHkYpnhbCX0c8wBOVK9X7zOvLBepi9MSgRDlDs=
codeberg.org/gruf/go-store/v2 v2.0.3 h1:htjXCThi53bmqPYmtrc5aiWOjW4yN5tlHSPRLtsOGgY=
codeberg.org/gruf/go-store/v2 v2.0.3/go.mod h1:bgHRkBHkYpnhbCX0c8wBOVK9X7zOvLBepi9MSgRDlDs=
dmitri.shuralyov.com/gpu/mtl v0.0.0-20190408044501-666a987793e9/go.mod h1:H6x//7gZCb22OMCxBHrMx7a5I7Hp++hsVxbQ4BYO7hU=
github.com/BurntSushi/toml v0.3.1/go.mod h1:xHWCNGjB5oqiDr8zfno3MHue2Ht5sIBksp03qcyfWMU=
github.com/BurntSushi/xgb v0.0.0-20160522181843-27f122750802/go.mod h1:IVnqGOEym/WlBOVXweHU+Q+/VP0lqqI8lqeDx9IjBqo=
@ -140,6 +137,8 @@ github.com/coreos/go-oidc/v3 v3.4.0 h1:xz7elHb/LDwm/ERpwHd+5nb7wFHL32rsr6bBOgaeu
github.com/coreos/go-oidc/v3 v3.4.0/go.mod h1:eHUXhZtXPQLgEaDrOVTgwbgmz1xGOkJNye6h3zkD2Pw=
github.com/coreos/go-systemd v0.0.0-20190321100706-95778dfbb74e/go.mod h1:F5haX7vjVVG0kc13fIWeqUViNPyEJxv/OmvnBo0Yme4=
github.com/coreos/go-systemd v0.0.0-20190719114852-fd7a80b32e1f/go.mod h1:F5haX7vjVVG0kc13fIWeqUViNPyEJxv/OmvnBo0Yme4=
github.com/cornelk/hashmap v1.0.8 h1:nv0AWgw02n+iDcawr5It4CjQIAcdMMKRrs10HOJYlrc=
github.com/cornelk/hashmap v1.0.8/go.mod h1:RfZb7JO3RviW/rT6emczVuC/oxpdz4UsSB2LJSclR1k=
github.com/cpuguy83/go-md2man/v2 v2.0.2/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
github.com/creack/pty v1.1.7/go.mod h1:lj5s0c3V2DBrqTV7llrYr5NG6My20zk30Fl46Y7DoTY=
github.com/creack/pty v1.1.9/go.mod h1:oKZEueFk5CKHvIhNR5MUki03XCEU+Q6VDXinZuGJ33E=
@ -271,8 +270,6 @@ github.com/golang/protobuf v1.5.1/go.mod h1:DopwsBzvsk0Fs44TXzsVbJyPhcCPeIwnvohx
github.com/golang/protobuf v1.5.2 h1:ROPKBNFfQgOUMifHyP+KYbvpjbdoFNs+aK7DXlji0Tw=
github.com/golang/protobuf v1.5.2/go.mod h1:XVQd3VNwM+JqD3oG2Ue2ip4fOMUkwXdXDdiuN0vRsmY=
github.com/golang/snappy v0.0.3/go.mod h1:/XxbfmMg8lxefKM7IXC3fBNl/7bRcc72aCRzEWrmP2Q=
github.com/golang/snappy v0.0.4 h1:yAGX7huGHXlcLOEtBnF4w7FQwA26wojNCwOYAEhLjQM=
github.com/golang/snappy v0.0.4/go.mod h1:/XxbfmMg8lxefKM7IXC3fBNl/7bRcc72aCRzEWrmP2Q=
github.com/google/btree v0.0.0-20180813153112-4030bb1f1f0c/go.mod h1:lNA+9X1NB3Zf8V7Ke586lFgjr2dZNuvo3lPJSGZ5JPQ=
github.com/google/btree v1.0.0/go.mod h1:lNA+9X1NB3Zf8V7Ke586lFgjr2dZNuvo3lPJSGZ5JPQ=
github.com/google/go-cmp v0.2.0/go.mod h1:oXzfMopK8JAjlY9xF4vHSVASa0yLyX7SntLO5aqRK0M=
@ -463,8 +460,8 @@ github.com/miekg/dns v1.1.50 h1:DQUfb9uc6smULcREF09Uc+/Gd46YWqJd5DbpPE9xkcA=
github.com/miekg/dns v1.1.50/go.mod h1:e3IlAVfNqAllflbibAZEWOXOQ+Ynzk/dDozDxY7XnME=
github.com/minio/md5-simd v1.1.2 h1:Gdi1DZK69+ZVMoNHRXJyNcxrMA4dSxoYHZSQbirFg34=
github.com/minio/md5-simd v1.1.2/go.mod h1:MzdKDxYpY2BT9XQFocsiZf/NKVtR7nkE4RoEpN+20RM=
github.com/minio/minio-go/v7 v7.0.36 h1:KPzAl8C6jcRFEUsGUHR6deRivvKATPNZThzi7D9y/sc=
github.com/minio/minio-go/v7 v7.0.36/go.mod h1:nCrRzjoSUQh8hgKKtu3Y708OLvRLtuASMg2/nvmbarw=
github.com/minio/minio-go/v7 v7.0.37 h1:aJvYMbtpVPSFBck6guyvOkxK03MycxDOCs49ZBuY5M8=
github.com/minio/minio-go/v7 v7.0.37/go.mod h1:nCrRzjoSUQh8hgKKtu3Y708OLvRLtuASMg2/nvmbarw=
github.com/minio/sha256-simd v1.0.0 h1:v1ta+49hkWZyvaKwrQB8elexRqm6Y0aMLjCNsrYxo6g=
github.com/minio/sha256-simd v1.0.0/go.mod h1:OuYzVNI5vcoYIAmbIvHPl3N3jUzVedXbKy5RFepssQM=
github.com/mitchellh/mapstructure v1.5.0 h1:jeMsZIYE/09sWLaz43PL7Gy6RuMjD2eJVyuac5Z2hdY=

View File

@ -138,7 +138,7 @@ func (suite *MediaCreateTestSuite) TestMediaCreateSuccessful() {
// see what's in storage *before* the request
storageKeysBeforeRequest := []string{}
iter, err := suite.storage.KVStore.Iterator(nil)
iter, err := suite.storage.KVStore.Iterator(context.Background(), nil)
if err != nil {
panic(err)
}
@ -170,7 +170,7 @@ func (suite *MediaCreateTestSuite) TestMediaCreateSuccessful() {
// check what's in storage *after* the request
storageKeysAfterRequest := []string{}
iter, err = suite.storage.KVStore.Iterator(nil)
iter, err = suite.storage.KVStore.Iterator(context.Background(), nil)
if err != nil {
panic(err)
}
@ -232,7 +232,7 @@ func (suite *MediaCreateTestSuite) TestMediaCreateSuccessfulV2() {
// see what's in storage *before* the request
storageKeysBeforeRequest := []string{}
iter, err := suite.storage.KVStore.Iterator(nil)
iter, err := suite.storage.KVStore.Iterator(context.Background(), nil)
if err != nil {
panic(err)
}
@ -264,7 +264,7 @@ func (suite *MediaCreateTestSuite) TestMediaCreateSuccessfulV2() {
// check what's in storage *after* the request
storageKeysAfterRequest := []string{}
iter, err = suite.storage.KVStore.Iterator(nil)
iter, err = suite.storage.KVStore.Iterator(context.Background(), nil)
if err != nil {
panic(err)
}

View File

@ -24,8 +24,8 @@ import (
"fmt"
"path"
"codeberg.org/gruf/go-store/kv"
"codeberg.org/gruf/go-store/storage"
"codeberg.org/gruf/go-store/v2/kv"
"codeberg.org/gruf/go-store/v2/storage"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/gtsmodel"
"github.com/superseriousbusiness/gotosocial/internal/log"
@ -34,13 +34,13 @@ import (
func init() {
deleteAttachment := func(ctx context.Context, l log.Entry, a *gtsmodel.MediaAttachment, s *kv.KVStore, tx bun.Tx) {
if err := s.Delete(a.File.Path); err != nil && err != storage.ErrNotFound {
if err := s.Delete(ctx, a.File.Path); err != nil && err != storage.ErrNotFound {
l.Errorf("error removing file %s: %s", a.File.Path, err)
} else {
l.Debugf("deleted %s", a.File.Path)
}
if err := s.Delete(a.Thumbnail.Path); err != nil && err != storage.ErrNotFound {
if err := s.Delete(ctx, a.Thumbnail.Path); err != nil && err != storage.ErrNotFound {
l.Errorf("error removing file %s: %s", a.Thumbnail.Path, err)
} else {
l.Debugf("deleted %s", a.Thumbnail.Path)
@ -70,7 +70,7 @@ func init() {
}
return db.RunInTx(ctx, nil, func(ctx context.Context, tx bun.Tx) error {
s, err := kv.OpenFile(storageBasePath, &storage.DiskConfig{
s, err := kv.OpenDisk(storageBasePath, &storage.DiskConfig{
LockFile: path.Join(storageBasePath, "store.lock"),
})
if err != nil {

View File

@ -27,8 +27,8 @@ import (
"path"
"testing"
"codeberg.org/gruf/go-store/kv"
"codeberg.org/gruf/go-store/storage"
"codeberg.org/gruf/go-store/v2/kv"
"codeberg.org/gruf/go-store/v2/storage"
"github.com/stretchr/testify/suite"
gtsmodel "github.com/superseriousbusiness/gotosocial/internal/gtsmodel"
"github.com/superseriousbusiness/gotosocial/internal/media"
@ -927,7 +927,7 @@ func (suite *ManagerTestSuite) TestSimpleJpegProcessBlockingWithDiskStorage() {
temp := fmt.Sprintf("%s/gotosocial-test", os.TempDir())
defer os.RemoveAll(temp)
diskStorage, err := kv.OpenFile(temp, &storage.DiskConfig{
diskStorage, err := kv.OpenDisk(temp, &storage.DiskConfig{
LockFile: path.Join(temp, "store.lock"),
})
if err != nil {
@ -974,7 +974,7 @@ func (suite *ManagerTestSuite) TestSimpleJpegProcessBlockingWithDiskStorage() {
suite.NotNil(dbAttachment)
// make sure the processed file is in storage
processedFullBytes, err := diskStorage.Get(attachment.File.Path)
processedFullBytes, err := diskStorage.Get(ctx, attachment.File.Path)
suite.NoError(err)
suite.NotEmpty(processedFullBytes)
@ -987,7 +987,7 @@ func (suite *ManagerTestSuite) TestSimpleJpegProcessBlockingWithDiskStorage() {
suite.Equal(processedFullBytesExpected, processedFullBytes)
// now do the same for the thumbnail and make sure it's what we expected
processedThumbnailBytes, err := diskStorage.Get(attachment.Thumbnail.Path)
processedThumbnailBytes, err := diskStorage.Get(ctx, attachment.Thumbnail.Path)
suite.NoError(err)
suite.NotEmpty(processedThumbnailBytes)

View File

@ -29,7 +29,7 @@ import (
"sync/atomic"
"time"
gostore "codeberg.org/gruf/go-store/storage"
gostore "codeberg.org/gruf/go-store/v2/storage"
"github.com/superseriousbusiness/gotosocial/internal/config"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/gtsmodel"

View File

@ -21,7 +21,7 @@ package media
import (
"context"
"codeberg.org/gruf/go-store/storage"
"codeberg.org/gruf/go-store/v2/storage"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/gtsmodel"
"github.com/superseriousbusiness/gotosocial/internal/log"

View File

@ -22,7 +22,7 @@ import (
"context"
"testing"
"codeberg.org/gruf/go-store/storage"
"codeberg.org/gruf/go-store/v2/storage"
"github.com/stretchr/testify/suite"
"github.com/superseriousbusiness/gotosocial/internal/db"
)

View File

@ -22,7 +22,7 @@ import (
"context"
"fmt"
"codeberg.org/gruf/go-store/storage"
"codeberg.org/gruf/go-store/v2/storage"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/gtsmodel"
"github.com/superseriousbusiness/gotosocial/internal/log"

View File

@ -25,7 +25,7 @@ import (
"os"
"testing"
"codeberg.org/gruf/go-store/storage"
"codeberg.org/gruf/go-store/v2/storage"
"github.com/stretchr/testify/suite"
)

View File

@ -22,7 +22,7 @@ import (
"context"
"fmt"
"codeberg.org/gruf/go-store/storage"
"codeberg.org/gruf/go-store/v2/storage"
"github.com/superseriousbusiness/gotosocial/internal/db"
"github.com/superseriousbusiness/gotosocial/internal/gtsmodel"
"github.com/superseriousbusiness/gotosocial/internal/log"

View File

@ -23,8 +23,8 @@ import (
"io"
"net/url"
"codeberg.org/gruf/go-store/kv"
"codeberg.org/gruf/go-store/storage"
"codeberg.org/gruf/go-store/v2/kv"
"codeberg.org/gruf/go-store/v2/storage"
)
type Local struct {
@ -32,15 +32,15 @@ type Local struct {
}
func (l *Local) Get(ctx context.Context, key string) ([]byte, error) {
return l.KVStore.Get(key)
return l.KVStore.Get(ctx, key)
}
func (l *Local) GetStream(ctx context.Context, key string) (io.ReadCloser, error) {
return l.KVStore.GetStream(key)
return l.KVStore.GetStream(ctx, key)
}
func (l *Local) PutStream(ctx context.Context, key string, r io.Reader) error {
err := l.KVStore.PutStream(key, r)
err := l.KVStore.PutStream(ctx, key, r)
if err == storage.ErrAlreadyExists {
return ErrAlreadyExists
}
@ -48,7 +48,7 @@ func (l *Local) PutStream(ctx context.Context, key string, r io.Reader) error {
}
func (l *Local) Put(ctx context.Context, key string, value []byte) error {
err := l.KVStore.Put(key, value)
err := l.KVStore.Put(ctx, key, value)
if err == storage.ErrAlreadyExists {
return ErrAlreadyExists
}
@ -56,7 +56,7 @@ func (l *Local) Put(ctx context.Context, key string, value []byte) error {
}
func (l *Local) Delete(ctx context.Context, key string) error {
return l.KVStore.Delete(key)
return l.KVStore.Delete(ctx, key)
}
func (l *Local) URL(ctx context.Context, key string) *url.URL {

View File

@ -26,8 +26,8 @@ import (
"net/url"
"path"
"codeberg.org/gruf/go-store/kv"
"codeberg.org/gruf/go-store/storage"
"codeberg.org/gruf/go-store/v2/kv"
"codeberg.org/gruf/go-store/v2/storage"
"github.com/minio/minio-go/v7"
"github.com/minio/minio-go/v7/pkg/credentials"
"github.com/superseriousbusiness/gotosocial/internal/config"
@ -60,7 +60,7 @@ func AutoConfig() (Driver, error) {
return NewS3(mc, config.GetStorageS3BucketName()), nil
case "local":
storageBasePath := config.GetStorageLocalBasePath()
storage, err := kv.OpenFile(storageBasePath, &storage.DiskConfig{
storage, err := kv.OpenDisk(storageBasePath, &storage.DiskConfig{
// Put the store lockfile in the storage dir itself.
// Normally this would not be safe, since we could end up
// overwriting the lockfile if we store a file called 'store.lock'.

View File

@ -24,8 +24,8 @@ import (
"os"
"path"
"codeberg.org/gruf/go-store/kv"
"codeberg.org/gruf/go-store/storage"
"codeberg.org/gruf/go-store/v2/kv"
"codeberg.org/gruf/go-store/v2/storage"
"github.com/minio/minio-go/v7"
"github.com/minio/minio-go/v7/pkg/credentials"
gtsstorage "github.com/superseriousbusiness/gotosocial/internal/storage"
@ -116,7 +116,7 @@ func StandardStorageTeardown(s gtsstorage.Driver) {
switch st := s.(type) {
case *gtsstorage.Local:
iter, err := st.KVStore.Iterator(nil)
iter, err := st.KVStore.Iterator(context.Background(), nil)
if err != nil {
panic(err)
}

View File

@ -1,63 +0,0 @@
package kv
import (
"errors"
"codeberg.org/gruf/go-mutexes"
"codeberg.org/gruf/go-store/storage"
)
var ErrIteratorClosed = errors.New("store/kv: iterator closed")
// KVIterator provides a read-only iterator to all the key-value
// pairs in a KVStore. While the iterator is open the store is read
// locked, you MUST release the iterator when you are finished with
// it.
//
// Please note:
// - individual iterators are NOT concurrency safe, though it is safe to
// have multiple iterators running concurrently
type KVIterator struct {
store *KVStore // store is the linked KVStore
state *mutexes.LockState
entries []storage.StorageEntry
index int
key string
}
// Next attempts to set the next key-value pair, the
// return value is if there was another pair remaining
func (i *KVIterator) Next() bool {
next := i.index + 1
if next >= len(i.entries) {
i.key = ""
return false
}
i.key = i.entries[next].Key()
i.index = next
return true
}
// Key returns the next key from the store
func (i *KVIterator) Key() string {
return i.key
}
// Release releases the KVIterator and KVStore's read lock
func (i *KVIterator) Release() {
i.state.UnlockMap()
i.store = nil
i.key = ""
i.entries = nil
}
// Value returns the next value from the KVStore
func (i *KVIterator) Value() ([]byte, error) {
// Check store isn't closed
if i.store == nil {
return nil, ErrIteratorClosed
}
// Attempt to fetch from store
return i.store.get(i.state.RLock, i.key)
}

View File

@ -1,130 +0,0 @@
package kv
import (
"errors"
"io"
"codeberg.org/gruf/go-mutexes"
)
var ErrStateClosed = errors.New("store/kv: state closed")
// StateRO provides a read-only window to the store. While this
// state is active during the Read() function window, the entire
// store will be read-locked. The state is thread-safe for concurrent
// use UNTIL the moment that your supplied function to Read() returns,
// then the state has zero guarantees
type StateRO struct {
store *KVStore
state *mutexes.LockState
}
func (st *StateRO) Get(key string) ([]byte, error) {
// Check not closed
if st.store == nil {
return nil, ErrStateClosed
}
// Pass request to store
return st.store.get(st.state.RLock, key)
}
func (st *StateRO) GetStream(key string) (io.ReadCloser, error) {
// Check not closed
if st.store == nil {
return nil, ErrStateClosed
}
// Pass request to store
return st.store.getStream(st.state.RLock, key)
}
func (st *StateRO) Has(key string) (bool, error) {
// Check not closed
if st.store == nil {
return false, ErrStateClosed
}
// Pass request to store
return st.store.has(st.state.RLock, key)
}
func (st *StateRO) Release() {
st.state.UnlockMap()
st.store = nil
}
// StateRW provides a read-write window to the store. While this
// state is active during the Update() function window, the entire
// store will be locked. The state is thread-safe for concurrent
// use UNTIL the moment that your supplied function to Update() returns,
// then the state has zero guarantees
type StateRW struct {
store *KVStore
state *mutexes.LockState
}
func (st *StateRW) Get(key string) ([]byte, error) {
// Check not closed
if st.store == nil {
return nil, ErrStateClosed
}
// Pass request to store
return st.store.get(st.state.RLock, key)
}
func (st *StateRW) GetStream(key string) (io.ReadCloser, error) {
// Check not closed
if st.store == nil {
return nil, ErrStateClosed
}
// Pass request to store
return st.store.getStream(st.state.RLock, key)
}
func (st *StateRW) Put(key string, value []byte) error {
// Check not closed
if st.store == nil {
return ErrStateClosed
}
// Pass request to store
return st.store.put(st.state.Lock, key, value)
}
func (st *StateRW) PutStream(key string, r io.Reader) error {
// Check not closed
if st.store == nil {
return ErrStateClosed
}
// Pass request to store
return st.store.putStream(st.state.Lock, key, r)
}
func (st *StateRW) Has(key string) (bool, error) {
// Check not closed
if st.store == nil {
return false, ErrStateClosed
}
// Pass request to store
return st.store.has(st.state.RLock, key)
}
func (st *StateRW) Delete(key string) error {
// Check not closed
if st.store == nil {
return ErrStateClosed
}
// Pass request to store
return st.store.delete(st.state.Lock, key)
}
func (st *StateRW) Release() {
st.state.UnlockMap()
st.store = nil
}

View File

@ -1,227 +0,0 @@
package kv
import (
"io"
"codeberg.org/gruf/go-mutexes"
"codeberg.org/gruf/go-store/storage"
"codeberg.org/gruf/go-store/util"
)
// KVStore is a very simple, yet performant key-value store
type KVStore struct {
mutex mutexes.MutexMap // mutex is a map of keys to mutexes to protect file access
storage storage.Storage // storage is the underlying storage
}
func OpenFile(path string, cfg *storage.DiskConfig) (*KVStore, error) {
// Attempt to open disk storage
storage, err := storage.OpenFile(path, cfg)
if err != nil {
return nil, err
}
// Return new KVStore
return OpenStorage(storage)
}
func OpenBlock(path string, cfg *storage.BlockConfig) (*KVStore, error) {
// Attempt to open block storage
storage, err := storage.OpenBlock(path, cfg)
if err != nil {
return nil, err
}
// Return new KVStore
return OpenStorage(storage)
}
func OpenStorage(storage storage.Storage) (*KVStore, error) {
// Perform initial storage clean
err := storage.Clean()
if err != nil {
return nil, err
}
// Return new KVStore
return &KVStore{
mutex: mutexes.NewMap(-1, -1),
storage: storage,
}, nil
}
// RLock acquires a read-lock on supplied key, returning unlock function.
func (st *KVStore) RLock(key string) (runlock func()) {
return st.mutex.RLock(key)
}
// Lock acquires a write-lock on supplied key, returning unlock function.
func (st *KVStore) Lock(key string) (unlock func()) {
return st.mutex.Lock(key)
}
// Get fetches the bytes for supplied key in the store
func (st *KVStore) Get(key string) ([]byte, error) {
return st.get(st.RLock, key)
}
func (st *KVStore) get(rlock func(string) func(), key string) ([]byte, error) {
// Acquire read lock for key
runlock := rlock(key)
defer runlock()
// Read file bytes
return st.storage.ReadBytes(key)
}
// GetStream fetches a ReadCloser for the bytes at the supplied key location in the store
func (st *KVStore) GetStream(key string) (io.ReadCloser, error) {
return st.getStream(st.RLock, key)
}
func (st *KVStore) getStream(rlock func(string) func(), key string) (io.ReadCloser, error) {
// Acquire read lock for key
runlock := rlock(key)
// Attempt to open stream for read
rd, err := st.storage.ReadStream(key)
if err != nil {
runlock()
return nil, err
}
// Wrap readcloser in our own callback closer
return util.ReadCloserWithCallback(rd, runlock), nil
}
// Put places the bytes at the supplied key location in the store
func (st *KVStore) Put(key string, value []byte) error {
return st.put(st.Lock, key, value)
}
func (st *KVStore) put(lock func(string) func(), key string, value []byte) error {
// Acquire write lock for key
unlock := lock(key)
defer unlock()
// Write file bytes
return st.storage.WriteBytes(key, value)
}
// PutStream writes the bytes from the supplied Reader at the supplied key location in the store
func (st *KVStore) PutStream(key string, r io.Reader) error {
return st.putStream(st.Lock, key, r)
}
func (st *KVStore) putStream(lock func(string) func(), key string, r io.Reader) error {
// Acquire write lock for key
unlock := lock(key)
defer unlock()
// Write file stream
return st.storage.WriteStream(key, r)
}
// Has checks whether the supplied key exists in the store
func (st *KVStore) Has(key string) (bool, error) {
return st.has(st.RLock, key)
}
func (st *KVStore) has(rlock func(string) func(), key string) (bool, error) {
// Acquire read lock for key
runlock := rlock(key)
defer runlock()
// Stat file on disk
return st.storage.Stat(key)
}
// Delete removes the supplied key-value pair from the store
func (st *KVStore) Delete(key string) error {
return st.delete(st.Lock, key)
}
func (st *KVStore) delete(lock func(string) func(), key string) error {
// Acquire write lock for key
unlock := lock(key)
defer unlock()
// Remove file from disk
return st.storage.Remove(key)
}
// Iterator returns an Iterator for key-value pairs in the store, using supplied match function
func (st *KVStore) Iterator(matchFn func(string) bool) (*KVIterator, error) {
// If no function, match all
if matchFn == nil {
matchFn = func(string) bool { return true }
}
// Get store read lock
state := st.mutex.RLockMap()
// Setup the walk keys function
entries := []storage.StorageEntry{}
walkFn := func(entry storage.StorageEntry) {
// Ignore unmatched entries
if !matchFn(entry.Key()) {
return
}
// Add to entries
entries = append(entries, entry)
}
// Walk keys in the storage
err := st.storage.WalkKeys(storage.WalkKeysOptions{WalkFn: walkFn})
if err != nil {
state.UnlockMap()
return nil, err
}
// Return new iterator
return &KVIterator{
store: st,
state: state,
entries: entries,
index: -1,
key: "",
}, nil
}
// Read provides a read-only window to the store, holding it in a read-locked state until release
func (st *KVStore) Read() *StateRO {
state := st.mutex.RLockMap()
return &StateRO{store: st, state: state}
}
// ReadFn provides a read-only window to the store, holding it in a read-locked state until fn return.
func (st *KVStore) ReadFn(fn func(*StateRO)) {
// Acquire read-only state
state := st.Read()
defer state.Release()
// Pass to fn
fn(state)
}
// Update provides a read-write window to the store, holding it in a write-locked state until release
func (st *KVStore) Update() *StateRW {
state := st.mutex.LockMap()
return &StateRW{store: st, state: state}
}
// UpdateFn provides a read-write window to the store, holding it in a write-locked state until fn return.
func (st *KVStore) UpdateFn(fn func(*StateRW)) {
// Acquire read-write state
state := st.Update()
defer state.Release()
// Pass to fn
fn(state)
}
// Close will close the underlying storage, the mutex map locking (e.g. RLock(), Lock() will still work).
func (st *KVStore) Close() error {
return st.storage.Close()
}

View File

@ -1,104 +0,0 @@
package storage
import (
"compress/gzip"
"compress/zlib"
"io"
"codeberg.org/gruf/go-store/util"
"github.com/golang/snappy"
)
// Compressor defines a means of compressing/decompressing values going into a key-value store
type Compressor interface {
// Reader returns a new decompressing io.ReadCloser based on supplied (compressed) io.Reader
Reader(io.Reader) (io.ReadCloser, error)
// Writer returns a new compressing io.WriteCloser based on supplied (uncompressed) io.Writer
Writer(io.Writer) (io.WriteCloser, error)
}
type gzipCompressor struct {
level int
}
// GZipCompressor returns a new Compressor that implements GZip at default compression level
func GZipCompressor() Compressor {
return GZipCompressorLevel(gzip.DefaultCompression)
}
// GZipCompressorLevel returns a new Compressor that implements GZip at supplied compression level
func GZipCompressorLevel(level int) Compressor {
return &gzipCompressor{
level: level,
}
}
func (c *gzipCompressor) Reader(r io.Reader) (io.ReadCloser, error) {
return gzip.NewReader(r)
}
func (c *gzipCompressor) Writer(w io.Writer) (io.WriteCloser, error) {
return gzip.NewWriterLevel(w, c.level)
}
type zlibCompressor struct {
level int
dict []byte
}
// ZLibCompressor returns a new Compressor that implements ZLib at default compression level
func ZLibCompressor() Compressor {
return ZLibCompressorLevelDict(zlib.DefaultCompression, nil)
}
// ZLibCompressorLevel returns a new Compressor that implements ZLib at supplied compression level
func ZLibCompressorLevel(level int) Compressor {
return ZLibCompressorLevelDict(level, nil)
}
// ZLibCompressorLevelDict returns a new Compressor that implements ZLib at supplied compression level with supplied dict
func ZLibCompressorLevelDict(level int, dict []byte) Compressor {
return &zlibCompressor{
level: level,
dict: dict,
}
}
func (c *zlibCompressor) Reader(r io.Reader) (io.ReadCloser, error) {
return zlib.NewReaderDict(r, c.dict)
}
func (c *zlibCompressor) Writer(w io.Writer) (io.WriteCloser, error) {
return zlib.NewWriterLevelDict(w, c.level, c.dict)
}
type snappyCompressor struct{}
// SnappyCompressor returns a new Compressor that implements Snappy
func SnappyCompressor() Compressor {
return &snappyCompressor{}
}
func (c *snappyCompressor) Reader(r io.Reader) (io.ReadCloser, error) {
return util.NopReadCloser(snappy.NewReader(r)), nil
}
func (c *snappyCompressor) Writer(w io.Writer) (io.WriteCloser, error) {
return snappy.NewBufferedWriter(w), nil
}
type nopCompressor struct{}
// NoCompression is a Compressor that simply does nothing
func NoCompression() Compressor {
return &nopCompressor{}
}
func (c *nopCompressor) Reader(r io.Reader) (io.ReadCloser, error) {
return util.NopReadCloser(r), nil
}
func (c *nopCompressor) Writer(w io.Writer) (io.WriteCloser, error) {
return util.NopWriteCloser(w), nil
}

View File

@ -1,65 +0,0 @@
package storage
import (
"os"
"syscall"
"codeberg.org/gruf/go-store/util"
)
const (
// default file permission bits
defaultDirPerms = 0o755
defaultFilePerms = 0o644
// default file open flags
defaultFileROFlags = syscall.O_RDONLY
defaultFileRWFlags = syscall.O_CREAT | syscall.O_RDWR
defaultFileLockFlags = syscall.O_RDONLY | syscall.O_CREAT
)
// NOTE:
// These functions are for opening storage files,
// not necessarily for e.g. initial setup (OpenFile)
// open should not be called directly.
func open(path string, flags int) (*os.File, error) {
var fd int
err := util.RetryOnEINTR(func() (err error) {
fd, err = syscall.Open(path, flags, defaultFilePerms)
return
})
if err != nil {
return nil, err
}
return os.NewFile(uintptr(fd), path), nil
}
// stat checks for a file on disk.
func stat(path string) (bool, error) {
var stat syscall.Stat_t
err := util.RetryOnEINTR(func() error {
return syscall.Stat(path, &stat)
})
if err != nil {
if err == syscall.ENOENT { //nolint
err = nil
}
return false, err
}
return true, nil
}
// unlink removes a file (not dir!) on disk.
func unlink(path string) error {
return util.RetryOnEINTR(func() error {
return syscall.Unlink(path)
})
}
// rmdir removes a dir (not file!) on disk.
func rmdir(path string) error {
return util.RetryOnEINTR(func() error {
return syscall.Rmdir(path)
})
}

View File

@ -1,188 +0,0 @@
package storage
import (
"io"
"sync"
"codeberg.org/gruf/go-bytes"
"codeberg.org/gruf/go-store/util"
)
// MemoryStorage is a storage implementation that simply stores key-value
// pairs in a Go map in-memory. The map is protected by a mutex.
type MemoryStorage struct {
ow bool // overwrites
fs map[string][]byte
mu sync.Mutex
st uint32
}
// OpenMemory opens a new MemoryStorage instance with internal map of 'size'.
func OpenMemory(size int, overwrites bool) *MemoryStorage {
return &MemoryStorage{
fs: make(map[string][]byte, size),
mu: sync.Mutex{},
ow: overwrites,
}
}
// Clean implements Storage.Clean().
func (st *MemoryStorage) Clean() error {
st.mu.Lock()
defer st.mu.Unlock()
if st.st == 1 {
return ErrClosed
}
return nil
}
// ReadBytes implements Storage.ReadBytes().
func (st *MemoryStorage) ReadBytes(key string) ([]byte, error) {
// Lock storage
st.mu.Lock()
// Check store open
if st.st == 1 {
st.mu.Unlock()
return nil, ErrClosed
}
// Check for key
b, ok := st.fs[key]
st.mu.Unlock()
// Return early if not exist
if !ok {
return nil, ErrNotFound
}
// Create return copy
return bytes.Copy(b), nil
}
// ReadStream implements Storage.ReadStream().
func (st *MemoryStorage) ReadStream(key string) (io.ReadCloser, error) {
// Lock storage
st.mu.Lock()
// Check store open
if st.st == 1 {
st.mu.Unlock()
return nil, ErrClosed
}
// Check for key
b, ok := st.fs[key]
st.mu.Unlock()
// Return early if not exist
if !ok {
return nil, ErrNotFound
}
// Create io.ReadCloser from 'b' copy
b = bytes.Copy(b)
r := bytes.NewReader(b)
return util.NopReadCloser(r), nil
}
// WriteBytes implements Storage.WriteBytes().
func (st *MemoryStorage) WriteBytes(key string, b []byte) error {
// Lock storage
st.mu.Lock()
defer st.mu.Unlock()
// Check store open
if st.st == 1 {
return ErrClosed
}
_, ok := st.fs[key]
// Check for already exist
if ok && !st.ow {
return ErrAlreadyExists
}
// Write + unlock
st.fs[key] = bytes.Copy(b)
return nil
}
// WriteStream implements Storage.WriteStream().
func (st *MemoryStorage) WriteStream(key string, r io.Reader) error {
// Read all from reader
b, err := io.ReadAll(r)
if err != nil {
return err
}
// Write to storage
return st.WriteBytes(key, b)
}
// Stat implements Storage.Stat().
func (st *MemoryStorage) Stat(key string) (bool, error) {
// Lock storage
st.mu.Lock()
defer st.mu.Unlock()
// Check store open
if st.st == 1 {
return false, ErrClosed
}
// Check for key
_, ok := st.fs[key]
return ok, nil
}
// Remove implements Storage.Remove().
func (st *MemoryStorage) Remove(key string) error {
// Lock storage
st.mu.Lock()
defer st.mu.Unlock()
// Check store open
if st.st == 1 {
return ErrClosed
}
// Check for key
_, ok := st.fs[key]
if !ok {
return ErrNotFound
}
// Remove from store
delete(st.fs, key)
return nil
}
// Close implements Storage.Close().
func (st *MemoryStorage) Close() error {
st.mu.Lock()
st.st = 1
st.mu.Unlock()
return nil
}
// WalkKeys implements Storage.WalkKeys().
func (st *MemoryStorage) WalkKeys(opts WalkKeysOptions) error {
// Lock storage
st.mu.Lock()
defer st.mu.Unlock()
// Check store open
if st.st == 1 {
return ErrClosed
}
// Walk store keys
for key := range st.fs {
opts.WalkFn(entry(key))
}
return nil
}

View File

@ -1,82 +0,0 @@
package util
import (
"io/fs"
"os"
"codeberg.org/gruf/go-fastpath"
)
// WalkDir traverses the dir tree of the supplied path, performing the supplied walkFn on each entry
func WalkDir(pb *fastpath.Builder, path string, walkFn func(string, fs.DirEntry)) error {
// Read supplied dir path
dirEntries, err := os.ReadDir(path)
if err != nil {
return err
}
// Iter entries
for _, entry := range dirEntries {
// Pass to walk fn
walkFn(path, entry)
// Recurse dir entries
if entry.IsDir() {
err = WalkDir(pb, pb.Join(path, entry.Name()), walkFn)
if err != nil {
return err
}
}
}
return nil
}
// CleanDirs traverses the dir tree of the supplied path, removing any folders with zero children
func CleanDirs(path string) error {
// Acquire builder
pb := GetPathBuilder()
defer PutPathBuilder(pb)
// Get dir entries
entries, err := os.ReadDir(path)
if err != nil {
return err
}
// Recurse dirs
for _, entry := range entries {
if entry.IsDir() {
err := cleanDirs(pb, pb.Join(path, entry.Name()))
if err != nil {
return err
}
}
}
return nil
}
// cleanDirs performs the actual dir cleaning logic for the exported version
func cleanDirs(pb *fastpath.Builder, path string) error {
// Get dir entries
entries, err := os.ReadDir(path)
if err != nil {
return err
}
// If no entries, delete
if len(entries) < 1 {
return os.Remove(path)
}
// Recurse dirs
for _, entry := range entries {
if entry.IsDir() {
err := cleanDirs(pb, pb.Join(path, entry.Name()))
if err != nil {
return err
}
}
}
return nil
}

View File

@ -1,42 +0,0 @@
package util
import "io"
// NopReadCloser turns a supplied io.Reader into io.ReadCloser with a nop Close() implementation
func NopReadCloser(r io.Reader) io.ReadCloser {
return &nopReadCloser{r}
}
// NopWriteCloser turns a supplied io.Writer into io.WriteCloser with a nop Close() implementation
func NopWriteCloser(w io.Writer) io.WriteCloser {
return &nopWriteCloser{w}
}
// ReadCloserWithCallback adds a customizable callback to be called upon Close() of a supplied io.ReadCloser
func ReadCloserWithCallback(rc io.ReadCloser, cb func()) io.ReadCloser {
return &callbackReadCloser{
ReadCloser: rc,
callback: cb,
}
}
// nopReadCloser turns an io.Reader -> io.ReadCloser with a nop Close()
type nopReadCloser struct{ io.Reader }
func (r *nopReadCloser) Close() error { return nil }
// nopWriteCloser turns an io.Writer -> io.WriteCloser with a nop Close()
type nopWriteCloser struct{ io.Writer }
func (w nopWriteCloser) Close() error { return nil }
// callbackReadCloser allows adding our own custom callback to an io.ReadCloser
type callbackReadCloser struct {
io.ReadCloser
callback func()
}
func (c *callbackReadCloser) Close() error {
defer c.callback()
return c.ReadCloser.Close()
}

View File

@ -1,14 +0,0 @@
package util
import "syscall"
// RetryOnEINTR is a low-level filesystem function for retrying syscalls on O_EINTR received
func RetryOnEINTR(do func() error) error {
for {
err := do()
if err == syscall.EINTR {
continue
}
return err
}
}

View File

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2021 gruf
Copyright (c) 2022 gruf
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

63
vendor/codeberg.org/gruf/go-store/v2/kv/iterator.go generated vendored Normal file
View File

@ -0,0 +1,63 @@
package kv
import (
"context"
"errors"
"codeberg.org/gruf/go-mutexes"
"codeberg.org/gruf/go-store/v2/storage"
)
var ErrIteratorClosed = errors.New("store/kv: iterator closed")
// Iterator provides a read-only iterator to all the key-value
// pairs in a KVStore. While the iterator is open the store is read
// locked, you MUST release the iterator when you are finished with
// it.
//
// Please note:
// individual iterators are NOT concurrency safe, though it is safe to
// have multiple iterators running concurrently.
type Iterator struct {
store *KVStore // store is the linked KVStore
state *mutexes.LockState
entries []storage.Entry
index int
key string
}
// Next attempts to fetch the next key-value pair, the
// return value indicates whether another pair remains.
func (i *Iterator) Next() bool {
next := i.index + 1
if next >= len(i.entries) {
i.key = ""
return false
}
i.key = i.entries[next].Key
i.index = next
return true
}
// Key returns the current iterator key.
func (i *Iterator) Key() string {
return i.key
}
// Value returns the current iterator value at key.
func (i *Iterator) Value(ctx context.Context) ([]byte, error) {
if i.store == nil {
return nil, ErrIteratorClosed
}
return i.store.get(i.state.RLock, ctx, i.key)
}
// Release will release the store read-lock, and close this iterator.
func (i *Iterator) Release() {
i.state.UnlockMap()
i.state = nil
i.store = nil
i.key = ""
i.entries = nil
i.index = 0
}

116
vendor/codeberg.org/gruf/go-store/v2/kv/state.go generated vendored Normal file
View File

@ -0,0 +1,116 @@
package kv
import (
"context"
"errors"
"io"
"codeberg.org/gruf/go-mutexes"
)
// ErrStateClosed is returned on further calls to states after calling Release().
var ErrStateClosed = errors.New("store/kv: state closed")
// StateRO provides a read-only window to the store. While this
// state is active during the Read() function window, the entire
// store will be read-locked. The state is thread-safe for concurrent
// use UNTIL the moment that your supplied function to Read() returns.
type StateRO struct {
store *KVStore
state *mutexes.LockState
}
// Get: see KVStore.Get(). Returns error if state already closed.
func (st *StateRO) Get(ctx context.Context, key string) ([]byte, error) {
if st.store == nil {
return nil, ErrStateClosed
}
return st.store.get(st.state.RLock, ctx, key)
}
// GetStream: see KVStore.GetStream(). Returns error if state already closed.
func (st *StateRO) GetStream(ctx context.Context, key string) (io.ReadCloser, error) {
if st.store == nil {
return nil, ErrStateClosed
}
return st.store.getStream(st.state.RLock, ctx, key)
}
// Has: see KVStore.Has(). Returns error if state already closed.
func (st *StateRO) Has(ctx context.Context, key string) (bool, error) {
if st.store == nil {
return false, ErrStateClosed
}
return st.store.has(st.state.RLock, ctx, key)
}
// Release will release the store read-lock, and close this state.
func (st *StateRO) Release() {
st.state.UnlockMap()
st.state = nil
st.store = nil
}
// StateRW provides a read-write window to the store. While this
// state is active during the Update() function window, the entire
// store will be locked. The state is thread-safe for concurrent
// use UNTIL the moment that your supplied function to Update() returns.
type StateRW struct {
store *KVStore
state *mutexes.LockState
}
// Get: see KVStore.Get(). Returns error if state already closed.
func (st *StateRW) Get(ctx context.Context, key string) ([]byte, error) {
if st.store == nil {
return nil, ErrStateClosed
}
return st.store.get(st.state.RLock, ctx, key)
}
// GetStream: see KVStore.GetStream(). Returns error if state already closed.
func (st *StateRW) GetStream(ctx context.Context, key string) (io.ReadCloser, error) {
if st.store == nil {
return nil, ErrStateClosed
}
return st.store.getStream(st.state.RLock, ctx, key)
}
// Put: see KVStore.Put(). Returns error if state already closed.
func (st *StateRW) Put(ctx context.Context, key string, value []byte) error {
if st.store == nil {
return ErrStateClosed
}
return st.store.put(st.state.Lock, ctx, key, value)
}
// PutStream: see KVStore.PutStream(). Returns error if state already closed.
func (st *StateRW) PutStream(ctx context.Context, key string, r io.Reader) error {
if st.store == nil {
return ErrStateClosed
}
return st.store.putStream(st.state.Lock, ctx, key, r)
}
// Has: see KVStore.Has(). Returns error if state already closed.
func (st *StateRW) Has(ctx context.Context, key string) (bool, error) {
if st.store == nil {
return false, ErrStateClosed
}
return st.store.has(st.state.RLock, ctx, key)
}
// Delete: see KVStore.Delete(). Returns error if state already closed.
func (st *StateRW) Delete(ctx context.Context, key string) error {
if st.store == nil {
return ErrStateClosed
}
return st.store.delete(st.state.Lock, ctx, key)
}
// Release will release the store lock, and close this state.
func (st *StateRW) Release() {
st.state.UnlockMap()
st.state = nil
st.store = nil
}

253
vendor/codeberg.org/gruf/go-store/v2/kv/store.go generated vendored Normal file
View File

@ -0,0 +1,253 @@
package kv
import (
"context"
"io"
"codeberg.org/gruf/go-mutexes"
"codeberg.org/gruf/go-store/v2/storage"
"codeberg.org/gruf/go-store/v2/util"
)
// KVStore is a very simple, yet performant key-value store
type KVStore struct {
mu mutexes.MutexMap // map of keys to mutexes to protect key access
st storage.Storage // underlying storage implementation
}
func OpenDisk(path string, cfg *storage.DiskConfig) (*KVStore, error) {
// Attempt to open disk storage
storage, err := storage.OpenDisk(path, cfg)
if err != nil {
return nil, err
}
// Return new KVStore
return OpenStorage(storage)
}
func OpenBlock(path string, cfg *storage.BlockConfig) (*KVStore, error) {
// Attempt to open block storage
storage, err := storage.OpenBlock(path, cfg)
if err != nil {
return nil, err
}
// Return new KVStore
return OpenStorage(storage)
}
func OpenMemory(overwrites bool) *KVStore {
return &KVStore{
mu: mutexes.NewMap(-1, -1),
st: storage.OpenMemory(100, overwrites),
}
}
func OpenS3(endpoint string, bucket string, cfg *storage.S3Config) (*KVStore, error) {
// Attempt to open S3 storage
storage, err := storage.OpenS3(endpoint, bucket, cfg)
if err != nil {
return nil, err
}
// Return new KVStore
return OpenStorage(storage)
}
func OpenStorage(storage storage.Storage) (*KVStore, error) {
// Perform initial storage clean
err := storage.Clean(context.Background())
if err != nil {
return nil, err
}
// Return new KVStore
return &KVStore{
mu: mutexes.NewMap(-1, -1),
st: storage,
}, nil
}
// RLock acquires a read-lock on supplied key, returning unlock function.
func (st *KVStore) RLock(key string) (runlock func()) {
return st.mu.RLock(key)
}
// Lock acquires a write-lock on supplied key, returning unlock function.
func (st *KVStore) Lock(key string) (unlock func()) {
return st.mu.Lock(key)
}
// Get fetches the bytes for supplied key in the store.
func (st *KVStore) Get(ctx context.Context, key string) ([]byte, error) {
return st.get(st.RLock, ctx, key)
}
// get performs the underlying logic for KVStore.Get(), using supplied read lock func to allow use with states.
func (st *KVStore) get(rlock func(string) func(), ctx context.Context, key string) ([]byte, error) {
// Acquire read lock for key
runlock := rlock(key)
defer runlock()
// Read file bytes from storage
return st.st.ReadBytes(ctx, key)
}
// GetStream fetches a ReadCloser for the bytes at the supplied key in the store.
func (st *KVStore) GetStream(ctx context.Context, key string) (io.ReadCloser, error) {
return st.getStream(st.RLock, ctx, key)
}
// getStream performs the underlying logic for KVStore.GetStream(), using supplied read lock func to allow use with states.
func (st *KVStore) getStream(rlock func(string) func(), ctx context.Context, key string) (io.ReadCloser, error) {
// Acquire read lock for key
runlock := rlock(key)
// Attempt to open stream for read
rd, err := st.st.ReadStream(ctx, key)
if err != nil {
runlock()
return nil, err
}
// Wrap readcloser in our own callback closer
return util.ReadCloserWithCallback(rd, runlock), nil
}
// Put places the bytes at the supplied key in the store.
func (st *KVStore) Put(ctx context.Context, key string, value []byte) error {
return st.put(st.Lock, ctx, key, value)
}
// put performs the underlying logic for KVStore.Put(), using supplied lock func to allow use with states.
func (st *KVStore) put(lock func(string) func(), ctx context.Context, key string, value []byte) error {
// Acquire write lock for key
unlock := lock(key)
defer unlock()
// Write file bytes to storage
return st.st.WriteBytes(ctx, key, value)
}
// PutStream writes the bytes from the supplied Reader at the supplied key in the store.
func (st *KVStore) PutStream(ctx context.Context, key string, r io.Reader) error {
return st.putStream(st.Lock, ctx, key, r)
}
// putStream performs the underlying logic for KVStore.PutStream(), using supplied lock func to allow use with states.
func (st *KVStore) putStream(lock func(string) func(), ctx context.Context, key string, r io.Reader) error {
// Acquire write lock for key
unlock := lock(key)
defer unlock()
// Write file stream to storage
return st.st.WriteStream(ctx, key, r)
}
// Has checks whether the supplied key exists in the store.
func (st *KVStore) Has(ctx context.Context, key string) (bool, error) {
return st.has(st.RLock, ctx, key)
}
// has performs the underlying logic for KVStore.Has(), using supplied read lock func to allow use with states.
func (st *KVStore) has(rlock func(string) func(), ctx context.Context, key string) (bool, error) {
// Acquire read lock for key
runlock := rlock(key)
defer runlock()
// Stat file in storage
return st.st.Stat(ctx, key)
}
// Delete removes value at supplied key from the store.
func (st *KVStore) Delete(ctx context.Context, key string) error {
return st.delete(st.Lock, ctx, key)
}
// delete performs the underlying logic for KVStore.Delete(), using supplied lock func to allow use with states.
func (st *KVStore) delete(lock func(string) func(), ctx context.Context, key string) error {
// Acquire write lock for key
unlock := lock(key)
defer unlock()
// Remove file from storage
return st.st.Remove(ctx, key)
}
// Iterator returns an Iterator for key-value pairs in the store, using supplied match function
func (st *KVStore) Iterator(ctx context.Context, matchFn func(string) bool) (*Iterator, error) {
if matchFn == nil {
// By default simply match all keys
matchFn = func(string) bool { return true }
}
// Get store read lock state
state := st.mu.RLockMap()
var entries []storage.Entry
walkFn := func(ctx context.Context, entry storage.Entry) error {
// Ignore unmatched entries
if !matchFn(entry.Key) {
return nil
}
// Add to entries
entries = append(entries, entry)
return nil
}
// Collate keys in storage with our walk function
err := st.st.WalkKeys(ctx, storage.WalkKeysOptions{WalkFn: walkFn})
if err != nil {
state.UnlockMap()
return nil, err
}
// Return new iterator
return &Iterator{
store: st,
state: state,
entries: entries,
index: -1,
key: "",
}, nil
}
// Read provides a read-only window to the store, holding it in a read-locked state until release.
func (st *KVStore) Read() *StateRO {
state := st.mu.RLockMap()
return &StateRO{store: st, state: state}
}
// ReadFn provides a read-only window to the store, holding it in a read-locked state until fn return..
func (st *KVStore) ReadFn(fn func(*StateRO)) {
// Acquire read-only state
state := st.Read()
defer state.Release()
// Pass to fn
fn(state)
}
// Update provides a read-write window to the store, holding it in a write-locked state until release.
func (st *KVStore) Update() *StateRW {
state := st.mu.LockMap()
return &StateRW{store: st, state: state}
}
// UpdateFn provides a read-write window to the store, holding it in a write-locked state until fn return.
func (st *KVStore) UpdateFn(fn func(*StateRW)) {
// Acquire read-write state
state := st.Update()
defer state.Release()
// Pass to fn
fn(state)
}
// Close will close the underlying storage, the mutex map locking (e.g. RLock(), Lock()) will continue to function.
func (st *KVStore) Close() error {
return st.st.Close()
}

View File

@ -2,6 +2,7 @@ package storage
import (
"bytes"
"context"
"crypto/sha256"
"fmt"
"io"
@ -16,7 +17,7 @@ import (
"codeberg.org/gruf/go-fastcopy"
"codeberg.org/gruf/go-hashenc"
"codeberg.org/gruf/go-pools"
"codeberg.org/gruf/go-store/util"
"codeberg.org/gruf/go-store/v2/util"
)
var (
@ -24,7 +25,7 @@ var (
blockPathPrefix = "block/"
)
// DefaultBlockConfig is the default BlockStorage configuration
// DefaultBlockConfig is the default BlockStorage configuration.
var DefaultBlockConfig = &BlockConfig{
BlockSize: 1024 * 16,
WriteBufSize: 4096,
@ -32,25 +33,26 @@ var DefaultBlockConfig = &BlockConfig{
Compression: NoCompression(),
}
// BlockConfig defines options to be used when opening a BlockStorage
// BlockConfig defines options to be used when opening a BlockStorage.
type BlockConfig struct {
// BlockSize is the chunking size to use when splitting and storing blocks of data
// BlockSize is the chunking size to use when splitting and storing blocks of data.
BlockSize int
// ReadBufSize is the buffer size to use when reading node files
// ReadBufSize is the buffer size to use when reading node files.
ReadBufSize int
// WriteBufSize is the buffer size to use when writing file streams (PutStream)
// WriteBufSize is the buffer size to use when writing file streams.
WriteBufSize int
// Overwrite allows overwriting values of stored keys in the storage
// Overwrite allows overwriting values of stored keys in the storage.
Overwrite bool
// Compression is the Compressor to use when reading / writing files, default is no compression
// Compression is the Compressor to use when reading / writing files,
// default is no compression.
Compression Compressor
}
// getBlockConfig returns a valid BlockConfig for supplied ptr
// getBlockConfig returns a valid BlockConfig for supplied ptr.
func getBlockConfig(cfg *BlockConfig) BlockConfig {
// If nil, use default
if cfg == nil {
@ -63,12 +65,12 @@ func getBlockConfig(cfg *BlockConfig) BlockConfig {
}
// Assume 0 chunk size == use default
if cfg.BlockSize < 1 {
if cfg.BlockSize <= 0 {
cfg.BlockSize = DefaultBlockConfig.BlockSize
}
// Assume 0 buf size == use default
if cfg.WriteBufSize < 1 {
if cfg.WriteBufSize <= 0 {
cfg.WriteBufSize = DefaultDiskConfig.WriteBufSize
}
@ -85,7 +87,7 @@ func getBlockConfig(cfg *BlockConfig) BlockConfig {
// a filesystem. Each value is chunked into blocks of configured size and these
// blocks are stored with name equal to their base64-encoded SHA256 hash-sum. A
// "node" file is finally created containing an array of hashes contained within
// this value
// this value.
type BlockStorage struct {
path string // path is the root path of this store
blockPath string // blockPath is the joined root path + block path prefix
@ -103,7 +105,7 @@ type BlockStorage struct {
// the hash of the data.
}
// OpenBlock opens a BlockStorage instance for given folder path and configuration
// OpenBlock opens a BlockStorage instance for given folder path and configuration.
func OpenBlock(path string, cfg *BlockConfig) (*BlockStorage, error) {
// Acquire path builder
pb := util.GetPathBuilder()
@ -143,7 +145,7 @@ func OpenBlock(path string, cfg *BlockConfig) (*BlockStorage, error) {
if err != nil {
return nil, err
} else if !stat.IsDir() {
return nil, errPathIsFile
return nil, new_error("path is file")
}
// Open and acquire storage lock for path
@ -182,34 +184,29 @@ func OpenBlock(path string, cfg *BlockConfig) (*BlockStorage, error) {
return st, nil
}
// Clean implements storage.Clean()
func (st *BlockStorage) Clean() error {
// Track open
st.lock.Add()
defer st.lock.Done()
// Clean implements storage.Clean().
func (st *BlockStorage) Clean(ctx context.Context) error {
// Check if open
if st.lock.Closed() {
return ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return err
}
// Acquire path builder
pb := util.GetPathBuilder()
defer util.PutPathBuilder(pb)
nodes := map[string]*node{}
onceErr := errors.OnceError{}
// Walk nodes dir for entries
err := util.WalkDir(pb, st.nodePath, func(npath string, fsentry fs.DirEntry) {
err := walkDir(pb, st.nodePath, func(npath string, fsentry fs.DirEntry) error {
// Only deal with regular files
if !fsentry.Type().IsRegular() {
return
}
// Stop if we hit error previously
if onceErr.IsSet() {
return
return nil
}
// Get joined node path name
@ -218,8 +215,7 @@ func (st *BlockStorage) Clean() error {
// Attempt to open RO file
file, err := open(npath, defaultFileROFlags)
if err != nil {
onceErr.Store(err)
return
return err
}
defer file.Close()
@ -239,32 +235,24 @@ func (st *BlockStorage) Clean() error {
nil,
)
if err != nil {
onceErr.Store(err)
return
return err
}
// Append to nodes slice
nodes[fsentry.Name()] = &node
return nil
})
// Handle errors (though nodePath may not have been created yet)
if err != nil && !os.IsNotExist(err) {
return err
} else if onceErr.IsSet() {
return onceErr.Load()
}
// Walk blocks dir for entries
onceErr.Reset()
err = util.WalkDir(pb, st.blockPath, func(bpath string, fsentry fs.DirEntry) {
err = walkDir(pb, st.blockPath, func(bpath string, fsentry fs.DirEntry) error {
// Only deal with regular files
if !fsentry.Type().IsRegular() {
return
}
// Stop if we hit error previously
if onceErr.IsSet() {
return
return nil
}
inUse := false
@ -281,25 +269,19 @@ func (st *BlockStorage) Clean() error {
// Block hash is used by node
if inUse {
return
return nil
}
// Get joined block path name
bpath = pb.Join(bpath, fsentry.Name())
// Remove this unused block path
err := os.Remove(bpath)
if err != nil {
onceErr.Store(err)
return
}
return os.Remove(bpath)
})
// Handle errors (though blockPath may not have been created yet)
if err != nil && !os.IsNotExist(err) {
return err
} else if onceErr.IsSet() {
return onceErr.Load()
}
// If there are nodes left at this point, they are corrupt
@ -315,10 +297,10 @@ func (st *BlockStorage) Clean() error {
return nil
}
// ReadBytes implements Storage.ReadBytes()
func (st *BlockStorage) ReadBytes(key string) ([]byte, error) {
// ReadBytes implements Storage.ReadBytes().
func (st *BlockStorage) ReadBytes(ctx context.Context, key string) ([]byte, error) {
// Get stream reader for key
rc, err := st.ReadStream(key)
rc, err := st.ReadStream(ctx, key)
if err != nil {
return nil, err
}
@ -328,27 +310,27 @@ func (st *BlockStorage) ReadBytes(key string) ([]byte, error) {
return io.ReadAll(rc)
}
// ReadStream implements Storage.ReadStream()
func (st *BlockStorage) ReadStream(key string) (io.ReadCloser, error) {
// ReadStream implements Storage.ReadStream().
func (st *BlockStorage) ReadStream(ctx context.Context, key string) (io.ReadCloser, error) {
// Get node file path for key
npath, err := st.nodePathForKey(key)
if err != nil {
return nil, err
}
// Track open
st.lock.Add()
// Check if open
if st.lock.Closed() {
st.lock.Done()
return nil, ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return nil, err
}
// Attempt to open RO file
file, err := open(npath, defaultFileROFlags)
if err != nil {
st.lock.Done()
return nil, errSwapNotFound(err)
}
defer file.Close()
@ -357,8 +339,9 @@ func (st *BlockStorage) ReadStream(key string) (io.ReadCloser, error) {
hbuf := st.bufpool.Get()
defer st.bufpool.Put(hbuf)
var node node
// Write file contents to node
node := node{}
_, err = st.cppool.Copy(
&nodeWriter{
node: &node,
@ -367,18 +350,17 @@ func (st *BlockStorage) ReadStream(key string) (io.ReadCloser, error) {
file,
)
if err != nil {
st.lock.Done()
return nil, err
}
// Prepare block reader and return
rc := util.NopReadCloser(&blockReader{
return util.NopReadCloser(&blockReader{
storage: st,
node: &node,
}) // we wrap the blockreader to decr lockfile waitgroup
return util.ReadCloserWithCallback(rc, st.lock.Done), nil
}), nil
}
// readBlock reads the block with hash (key) from the filesystem.
func (st *BlockStorage) readBlock(key string) ([]byte, error) {
// Get block file path for key
bpath := st.blockPathForKey(key)
@ -386,14 +368,14 @@ func (st *BlockStorage) readBlock(key string) ([]byte, error) {
// Attempt to open RO file
file, err := open(bpath, defaultFileROFlags)
if err != nil {
return nil, wrap(errCorruptNode, err)
return nil, wrap(new_error("corrupted node"), err)
}
defer file.Close()
// Wrap the file in a compressor
cFile, err := st.config.Compression.Reader(file)
if err != nil {
return nil, wrap(errCorruptNode, err)
return nil, wrap(new_error("corrupted node"), err)
}
defer cFile.Close()
@ -401,28 +383,29 @@ func (st *BlockStorage) readBlock(key string) ([]byte, error) {
return io.ReadAll(cFile)
}
// WriteBytes implements Storage.WriteBytes()
func (st *BlockStorage) WriteBytes(key string, value []byte) error {
return st.WriteStream(key, bytes.NewReader(value))
// WriteBytes implements Storage.WriteBytes().
func (st *BlockStorage) WriteBytes(ctx context.Context, key string, value []byte) error {
return st.WriteStream(ctx, key, bytes.NewReader(value))
}
// WriteStream implements Storage.WriteStream()
func (st *BlockStorage) WriteStream(key string, r io.Reader) error {
// WriteStream implements Storage.WriteStream().
func (st *BlockStorage) WriteStream(ctx context.Context, key string, r io.Reader) error {
// Get node file path for key
npath, err := st.nodePathForKey(key)
if err != nil {
return err
}
// Track open
st.lock.Add()
defer st.lock.Done()
// Check if open
if st.lock.Closed() {
return ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return err
}
// Check if this exists
ok, err := stat(key)
if err != nil {
@ -446,8 +429,7 @@ func (st *BlockStorage) WriteStream(key string, r io.Reader) error {
return err
}
// Alloc new node
node := node{}
var node node
// Acquire HashEncoder
hc := st.hashPool.Get().(*hashEncoder)
@ -529,7 +511,7 @@ loop:
// If no hashes created, return
if len(node.hashes) < 1 {
return errNoHashesWritten
return new_error("no hashes written")
}
// Prepare to swap error if need-be
@ -563,11 +545,11 @@ loop:
buf.Grow(st.config.WriteBufSize)
// Finally, write data to file
_, err = io.CopyBuffer(file, &nodeReader{node: &node}, nil)
_, err = io.CopyBuffer(file, &nodeReader{node: node}, buf.B)
return err
}
// writeBlock writes the block with hash and supplied value to the filesystem
// writeBlock writes the block with hash and supplied value to the filesystem.
func (st *BlockStorage) writeBlock(hash string, value []byte) error {
// Get block file path for key
bpath := st.blockPathForKey(hash)
@ -594,49 +576,51 @@ func (st *BlockStorage) writeBlock(hash string, value []byte) error {
return err
}
// statBlock checks for existence of supplied block hash
// statBlock checks for existence of supplied block hash.
func (st *BlockStorage) statBlock(hash string) (bool, error) {
return stat(st.blockPathForKey(hash))
}
// Stat implements Storage.Stat()
func (st *BlockStorage) Stat(key string) (bool, error) {
func (st *BlockStorage) Stat(ctx context.Context, key string) (bool, error) {
// Get node file path for key
kpath, err := st.nodePathForKey(key)
if err != nil {
return false, err
}
// Track open
st.lock.Add()
defer st.lock.Done()
// Check if open
if st.lock.Closed() {
return false, ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return false, err
}
// Check for file on disk
return stat(kpath)
}
// Remove implements Storage.Remove()
func (st *BlockStorage) Remove(key string) error {
// Remove implements Storage.Remove().
func (st *BlockStorage) Remove(ctx context.Context, key string) error {
// Get node file path for key
kpath, err := st.nodePathForKey(key)
if err != nil {
return err
}
// Track open
st.lock.Add()
defer st.lock.Done()
// Check if open
if st.lock.Closed() {
return ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return err
}
// Remove at path (we know this is file)
if err := unlink(kpath); err != nil {
return errSwapNotFound(err)
@ -645,36 +629,43 @@ func (st *BlockStorage) Remove(key string) error {
return nil
}
// Close implements Storage.Close()
// Close implements Storage.Close().
func (st *BlockStorage) Close() error {
return st.lock.Close()
}
// WalkKeys implements Storage.WalkKeys()
func (st *BlockStorage) WalkKeys(opts WalkKeysOptions) error {
// Track open
st.lock.Add()
defer st.lock.Done()
// WalkKeys implements Storage.WalkKeys().
func (st *BlockStorage) WalkKeys(ctx context.Context, opts WalkKeysOptions) error {
// Check if open
if st.lock.Closed() {
return ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return err
}
// Acquire path builder
pb := util.GetPathBuilder()
defer util.PutPathBuilder(pb)
// Walk dir for entries
return util.WalkDir(pb, st.nodePath, func(npath string, fsentry fs.DirEntry) {
// Only deal with regular files
if fsentry.Type().IsRegular() {
opts.WalkFn(entry(fsentry.Name()))
return walkDir(pb, st.nodePath, func(npath string, fsentry fs.DirEntry) error {
if !fsentry.Type().IsRegular() {
// Only deal with regular files
return nil
}
// Perform provided walk function
return opts.WalkFn(ctx, Entry{
Key: fsentry.Name(),
Size: -1,
})
})
}
// nodePathForKey calculates the node file path for supplied key
// nodePathForKey calculates the node file path for supplied key.
func (st *BlockStorage) nodePathForKey(key string) (string, error) {
// Path separators are illegal, as directory paths
if strings.Contains(key, "/") || key == "." || key == ".." {
@ -693,41 +684,40 @@ func (st *BlockStorage) nodePathForKey(key string) (string, error) {
return pb.Join(st.nodePath, key), nil
}
// blockPathForKey calculates the block file path for supplied hash
// blockPathForKey calculates the block file path for supplied hash.
func (st *BlockStorage) blockPathForKey(hash string) string {
pb := util.GetPathBuilder()
defer util.PutPathBuilder(pb)
return pb.Join(st.blockPath, hash)
}
// hashSeparator is the separating byte between block hashes
// hashSeparator is the separating byte between block hashes.
const hashSeparator = byte('\n')
// node represents the contents of a node file in storage
// node represents the contents of a node file in storage.
type node struct {
hashes []string
}
// removeHash attempts to remove supplied block hash from the node's hash array
// removeHash attempts to remove supplied block hash from the node's hash array.
func (n *node) removeHash(hash string) bool {
haveDropped := false
for i := 0; i < len(n.hashes); {
if n.hashes[i] == hash {
// Drop this hash from slice
n.hashes = append(n.hashes[:i], n.hashes[i+1:]...)
haveDropped = true
} else {
// Continue iter
i++
return true
}
// Continue iter
i++
}
return haveDropped
return false
}
// nodeReader is an io.Reader implementation for the node file representation,
// which is useful when calculated node file is being written to the store
// which is useful when calculated node file is being written to the store.
type nodeReader struct {
node *node
node node
idx int
last int
}
@ -774,7 +764,7 @@ func (r *nodeReader) Read(b []byte) (int, error) {
}
// nodeWriter is an io.Writer implementation for the node file representation,
// which is useful when calculated node file is being read from the store
// which is useful when calculated node file is being read from the store.
type nodeWriter struct {
node *node
buf *byteutil.Buffer
@ -789,7 +779,7 @@ func (w *nodeWriter) Write(b []byte) (int, error) {
if idx == -1 {
// Check we shouldn't be expecting it
if w.buf.Len() > encodedHashLen {
return n, errInvalidNode
return n, new_error("invalid node")
}
// Write all contents to buffer
@ -802,7 +792,7 @@ func (w *nodeWriter) Write(b []byte) (int, error) {
w.buf.Write(b[n : n+idx])
n += idx + 1
if w.buf.Len() != encodedHashLen {
return n, errInvalidNode
return n, new_error("invalid node")
}
// Append to hashes & reset
@ -813,7 +803,7 @@ func (w *nodeWriter) Write(b []byte) (int, error) {
// blockReader is an io.Reader implementation for the combined, linked block
// data contained with a node file. Basically, this allows reading value data
// from the store for a given node file
// from the store for a given node file.
type blockReader struct {
storage *BlockStorage
node *node
@ -874,13 +864,13 @@ var (
)
)
// hashEncoder is a HashEncoder with built-in encode buffer
// hashEncoder is a HashEncoder with built-in encode buffer.
type hashEncoder struct {
henc hashenc.HashEncoder
ebuf []byte
}
// newHashEncoder returns a new hashEncoder instance
// newHashEncoder returns a new hashEncoder instance.
func newHashEncoder() *hashEncoder {
return &hashEncoder{
henc: hashenc.New(sha256.New(), base64Encoding),
@ -888,7 +878,7 @@ func newHashEncoder() *hashEncoder {
}
}
// EncodeSum encodes the src data and returns resulting bytes, only valid until next call to EncodeSum()
// EncodeSum encodes the src data and returns resulting bytes, only valid until next call to EncodeSum().
func (henc *hashEncoder) EncodeSum(src []byte) string {
henc.henc.EncodeSum(henc.ebuf, src)
return string(henc.ebuf)

View File

@ -0,0 +1,212 @@
package storage
import (
"bytes"
"io"
"sync"
"codeberg.org/gruf/go-store/v2/util"
"github.com/klauspost/compress/gzip"
"github.com/klauspost/compress/snappy"
"github.com/klauspost/compress/zlib"
)
// Compressor defines a means of compressing/decompressing values going into a key-value store
type Compressor interface {
// Reader returns a new decompressing io.ReadCloser based on supplied (compressed) io.Reader
Reader(io.Reader) (io.ReadCloser, error)
// Writer returns a new compressing io.WriteCloser based on supplied (uncompressed) io.Writer
Writer(io.Writer) (io.WriteCloser, error)
}
type gzipCompressor struct {
rpool sync.Pool
wpool sync.Pool
}
// GZipCompressor returns a new Compressor that implements GZip at default compression level
func GZipCompressor() Compressor {
return GZipCompressorLevel(gzip.DefaultCompression)
}
// GZipCompressorLevel returns a new Compressor that implements GZip at supplied compression level
func GZipCompressorLevel(level int) Compressor {
// GZip readers immediately check for valid
// header data on allocation / reset, so we
// need a set of valid header data so we can
// iniitialize reader instances in mempool.
hdr := bytes.NewBuffer(nil)
// Init writer to ensure valid level provided
gw, err := gzip.NewWriterLevel(hdr, level)
if err != nil {
panic(err)
}
// Write empty data to ensure gzip
// header data is in byte buffer.
gw.Write([]byte{})
gw.Close()
return &gzipCompressor{
rpool: sync.Pool{
New: func() any {
hdr := bytes.NewReader(hdr.Bytes())
gr, _ := gzip.NewReader(hdr)
return gr
},
},
wpool: sync.Pool{
New: func() any {
gw, _ := gzip.NewWriterLevel(nil, level)
return gw
},
},
}
}
func (c *gzipCompressor) Reader(r io.Reader) (io.ReadCloser, error) {
gr := c.rpool.Get().(*gzip.Reader)
if err := gr.Reset(r); err != nil {
c.rpool.Put(gr)
return nil, err
}
return util.ReadCloserWithCallback(gr, func() {
c.rpool.Put(gr)
}), nil
}
func (c *gzipCompressor) Writer(w io.Writer) (io.WriteCloser, error) {
gw := c.wpool.Get().(*gzip.Writer)
gw.Reset(w)
return util.WriteCloserWithCallback(gw, func() {
c.wpool.Put(gw)
}), nil
}
type zlibCompressor struct {
rpool sync.Pool
wpool sync.Pool
dict []byte
}
// ZLibCompressor returns a new Compressor that implements ZLib at default compression level
func ZLibCompressor() Compressor {
return ZLibCompressorLevelDict(zlib.DefaultCompression, nil)
}
// ZLibCompressorLevel returns a new Compressor that implements ZLib at supplied compression level
func ZLibCompressorLevel(level int) Compressor {
return ZLibCompressorLevelDict(level, nil)
}
// ZLibCompressorLevelDict returns a new Compressor that implements ZLib at supplied compression level with supplied dict
func ZLibCompressorLevelDict(level int, dict []byte) Compressor {
// ZLib readers immediately check for valid
// header data on allocation / reset, so we
// need a set of valid header data so we can
// iniitialize reader instances in mempool.
hdr := bytes.NewBuffer(nil)
// Init writer to ensure valid level + dict provided
zw, err := zlib.NewWriterLevelDict(hdr, level, dict)
if err != nil {
panic(err)
}
// Write empty data to ensure zlib
// header data is in byte buffer.
zw.Write([]byte{})
zw.Close()
return &zlibCompressor{
rpool: sync.Pool{
New: func() any {
hdr := bytes.NewReader(hdr.Bytes())
zr, _ := zlib.NewReaderDict(hdr, dict)
return zr
},
},
wpool: sync.Pool{
New: func() any {
zw, _ := zlib.NewWriterLevelDict(nil, level, dict)
return zw
},
},
dict: dict,
}
}
func (c *zlibCompressor) Reader(r io.Reader) (io.ReadCloser, error) {
zr := c.rpool.Get().(interface {
io.ReadCloser
zlib.Resetter
})
if err := zr.Reset(r, c.dict); err != nil {
c.rpool.Put(zr)
return nil, err
}
return util.ReadCloserWithCallback(zr, func() {
c.rpool.Put(zr)
}), nil
}
func (c *zlibCompressor) Writer(w io.Writer) (io.WriteCloser, error) {
zw := c.wpool.Get().(*zlib.Writer)
zw.Reset(w)
return util.WriteCloserWithCallback(zw, func() {
c.wpool.Put(zw)
}), nil
}
type snappyCompressor struct {
rpool sync.Pool
wpool sync.Pool
}
// SnappyCompressor returns a new Compressor that implements Snappy.
func SnappyCompressor() Compressor {
return &snappyCompressor{
rpool: sync.Pool{
New: func() any { return snappy.NewReader(nil) },
},
wpool: sync.Pool{
New: func() any { return snappy.NewWriter(nil) },
},
}
}
func (c *snappyCompressor) Reader(r io.Reader) (io.ReadCloser, error) {
sr := c.rpool.Get().(*snappy.Reader)
sr.Reset(r)
return util.ReadCloserWithCallback(
util.NopReadCloser(sr),
func() { c.rpool.Put(sr) },
), nil
}
func (c *snappyCompressor) Writer(w io.Writer) (io.WriteCloser, error) {
sw := c.wpool.Get().(*snappy.Writer)
sw.Reset(w)
return util.WriteCloserWithCallback(
util.NopWriteCloser(sw),
func() { c.wpool.Put(sw) },
), nil
}
type nopCompressor struct{}
// NoCompression is a Compressor that simply does nothing.
func NoCompression() Compressor {
return &nopCompressor{}
}
func (c *nopCompressor) Reader(r io.Reader) (io.ReadCloser, error) {
return util.NopReadCloser(r), nil
}
func (c *nopCompressor) Writer(w io.Writer) (io.WriteCloser, error) {
return util.NopWriteCloser(w), nil
}

View File

@ -1,6 +1,8 @@
package storage
import (
"context"
"errors"
"io"
"io/fs"
"os"
@ -11,10 +13,10 @@ import (
"codeberg.org/gruf/go-bytes"
"codeberg.org/gruf/go-fastcopy"
"codeberg.org/gruf/go-store/util"
"codeberg.org/gruf/go-store/v2/util"
)
// DefaultDiskConfig is the default DiskStorage configuration
// DefaultDiskConfig is the default DiskStorage configuration.
var DefaultDiskConfig = &DiskConfig{
Overwrite: true,
WriteBufSize: 4096,
@ -22,27 +24,28 @@ var DefaultDiskConfig = &DiskConfig{
Compression: NoCompression(),
}
// DiskConfig defines options to be used when opening a DiskStorage
// DiskConfig defines options to be used when opening a DiskStorage.
type DiskConfig struct {
// Transform is the supplied key<-->path KeyTransform
// Transform is the supplied key <--> path KeyTransform.
Transform KeyTransform
// WriteBufSize is the buffer size to use when writing file streams (PutStream)
// WriteBufSize is the buffer size to use when writing file streams.
WriteBufSize int
// Overwrite allows overwriting values of stored keys in the storage
// Overwrite allows overwriting values of stored keys in the storage.
Overwrite bool
// LockFile allows specifying the filesystem path to use for the lockfile,
// providing only a filename it will store the lockfile within provided store
// path and nest the store under `path/store` to prevent access to lockfile
// path and nest the store under `path/store` to prevent access to lockfile.
LockFile string
// Compression is the Compressor to use when reading / writing files, default is no compression
// Compression is the Compressor to use when reading / writing files,
// default is no compression.
Compression Compressor
}
// getDiskConfig returns a valid DiskConfig for supplied ptr
// getDiskConfig returns a valid DiskConfig for supplied ptr.
func getDiskConfig(cfg *DiskConfig) DiskConfig {
// If nil, use default
if cfg == nil {
@ -60,12 +63,12 @@ func getDiskConfig(cfg *DiskConfig) DiskConfig {
}
// Assume 0 buf size == use default
if cfg.WriteBufSize < 1 {
if cfg.WriteBufSize <= 0 {
cfg.WriteBufSize = DefaultDiskConfig.WriteBufSize
}
// Assume empty lockfile path == use default
if len(cfg.LockFile) < 1 {
if len(cfg.LockFile) == 0 {
cfg.LockFile = LockFile
}
@ -79,7 +82,7 @@ func getDiskConfig(cfg *DiskConfig) DiskConfig {
}
}
// DiskStorage is a Storage implementation that stores directly to a filesystem
// DiskStorage is a Storage implementation that stores directly to a filesystem.
type DiskStorage struct {
path string // path is the root path of this store
cppool fastcopy.CopyPool // cppool is the prepared io copier with buffer pool
@ -87,8 +90,8 @@ type DiskStorage struct {
lock *Lock // lock is the opened lockfile for this storage instance
}
// OpenFile opens a DiskStorage instance for given folder path and configuration
func OpenFile(path string, cfg *DiskConfig) (*DiskStorage, error) {
// OpenDisk opens a DiskStorage instance for given folder path and configuration.
func OpenDisk(path string, cfg *DiskConfig) (*DiskStorage, error) {
// Get checked config
config := getDiskConfig(cfg)
@ -104,7 +107,7 @@ func OpenFile(path string, cfg *DiskConfig) (*DiskStorage, error) {
lockfile := pb.Clean(config.LockFile)
// Check if lockfile is an *actual* path or just filename
if lockDir, _ := _path.Split(lockfile); len(lockDir) < 1 {
if lockDir, _ := _path.Split(lockfile); lockDir == "" {
// Lockfile is a filename, store must be nested under
// $storePath/store to prevent access to the lockfile
storePath += "store/"
@ -138,7 +141,7 @@ func OpenFile(path string, cfg *DiskConfig) (*DiskStorage, error) {
if err != nil {
return nil, err
} else if !stat.IsDir() {
return nil, errPathIsFile
return nil, errors.New("store/storage: path is file")
}
// Open and acquire storage lock for path
@ -160,20 +163,26 @@ func OpenFile(path string, cfg *DiskConfig) (*DiskStorage, error) {
return st, nil
}
// Clean implements Storage.Clean()
func (st *DiskStorage) Clean() error {
st.lock.Add()
defer st.lock.Done()
// Clean implements Storage.Clean().
func (st *DiskStorage) Clean(ctx context.Context) error {
// Check if open
if st.lock.Closed() {
return ErrClosed
}
return util.CleanDirs(st.path)
// Check context still valid
if err := ctx.Err(); err != nil {
return err
}
// Clean-out unused directories
return cleanDirs(st.path)
}
// ReadBytes implements Storage.ReadBytes()
func (st *DiskStorage) ReadBytes(key string) ([]byte, error) {
// ReadBytes implements Storage.ReadBytes().
func (st *DiskStorage) ReadBytes(ctx context.Context, key string) ([]byte, error) {
// Get stream reader for key
rc, err := st.ReadStream(key)
rc, err := st.ReadStream(ctx, key)
if err != nil {
return nil, err
}
@ -183,26 +192,27 @@ func (st *DiskStorage) ReadBytes(key string) ([]byte, error) {
return io.ReadAll(rc)
}
// ReadStream implements Storage.ReadStream()
func (st *DiskStorage) ReadStream(key string) (io.ReadCloser, error) {
// ReadStream implements Storage.ReadStream().
func (st *DiskStorage) ReadStream(ctx context.Context, key string) (io.ReadCloser, error) {
// Get file path for key
kpath, err := st.filepath(key)
if err != nil {
return nil, err
}
// Track open
st.lock.Add()
// Check if open
if st.lock.Closed() {
return nil, ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return nil, err
}
// Attempt to open file (replace ENOENT with our own)
file, err := open(kpath, defaultFileROFlags)
if err != nil {
st.lock.Done()
return nil, errSwapNotFound(err)
}
@ -210,39 +220,38 @@ func (st *DiskStorage) ReadStream(key string) (io.ReadCloser, error) {
cFile, err := st.config.Compression.Reader(file)
if err != nil {
file.Close() // close this here, ignore error
st.lock.Done()
return nil, err
}
// Wrap compressor to ensure file close
return util.ReadCloserWithCallback(cFile, func() {
file.Close()
st.lock.Done()
}), nil
}
// WriteBytes implements Storage.WriteBytes()
func (st *DiskStorage) WriteBytes(key string, value []byte) error {
return st.WriteStream(key, bytes.NewReader(value))
// WriteBytes implements Storage.WriteBytes().
func (st *DiskStorage) WriteBytes(ctx context.Context, key string, value []byte) error {
return st.WriteStream(ctx, key, bytes.NewReader(value))
}
// WriteStream implements Storage.WriteStream()
func (st *DiskStorage) WriteStream(key string, r io.Reader) error {
// WriteStream implements Storage.WriteStream().
func (st *DiskStorage) WriteStream(ctx context.Context, key string, r io.Reader) error {
// Get file path for key
kpath, err := st.filepath(key)
if err != nil {
return err
}
// Track open
st.lock.Add()
defer st.lock.Done()
// Check if open
if st.lock.Closed() {
return ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return err
}
// Ensure dirs leading up to file exist
err = os.MkdirAll(path.Dir(kpath), defaultDirPerms)
if err != nil {
@ -280,44 +289,46 @@ func (st *DiskStorage) WriteStream(key string, r io.Reader) error {
return err
}
// Stat implements Storage.Stat()
func (st *DiskStorage) Stat(key string) (bool, error) {
// Stat implements Storage.Stat().
func (st *DiskStorage) Stat(ctx context.Context, key string) (bool, error) {
// Get file path for key
kpath, err := st.filepath(key)
if err != nil {
return false, err
}
// Track open
st.lock.Add()
defer st.lock.Done()
// Check if open
if st.lock.Closed() {
return false, ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return false, err
}
// Check for file on disk
return stat(kpath)
}
// Remove implements Storage.Remove()
func (st *DiskStorage) Remove(key string) error {
// Remove implements Storage.Remove().
func (st *DiskStorage) Remove(ctx context.Context, key string) error {
// Get file path for key
kpath, err := st.filepath(key)
if err != nil {
return err
}
// Track open
st.lock.Add()
defer st.lock.Done()
// Check if open
if st.lock.Closed() {
return ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return err
}
// Remove at path (we know this is file)
if err := unlink(kpath); err != nil {
return errSwapNotFound(err)
@ -326,41 +337,55 @@ func (st *DiskStorage) Remove(key string) error {
return nil
}
// Close implements Storage.Close()
// Close implements Storage.Close().
func (st *DiskStorage) Close() error {
return st.lock.Close()
}
// WalkKeys implements Storage.WalkKeys()
func (st *DiskStorage) WalkKeys(opts WalkKeysOptions) error {
// Track open
st.lock.Add()
defer st.lock.Done()
// WalkKeys implements Storage.WalkKeys().
func (st *DiskStorage) WalkKeys(ctx context.Context, opts WalkKeysOptions) error {
// Check if open
if st.lock.Closed() {
return ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return err
}
// Acquire path builder
pb := util.GetPathBuilder()
defer util.PutPathBuilder(pb)
// Walk dir for entries
return util.WalkDir(pb, st.path, func(kpath string, fsentry fs.DirEntry) {
if fsentry.Type().IsRegular() {
return walkDir(pb, st.path, func(kpath string, fsentry fs.DirEntry) error {
if !fsentry.Type().IsRegular() {
// Only deal with regular files
// Get full item path (without root)
kpath = pb.Join(kpath, fsentry.Name())[len(st.path):]
// Perform provided walk function
opts.WalkFn(entry(st.config.Transform.PathToKey(kpath)))
return nil
}
// Get full item path (without root)
kpath = pb.Join(kpath, fsentry.Name())
kpath = kpath[len(st.path):]
// Load file info. This should already
// be loaded due to the underlying call
// to os.File{}.ReadDir() populating them
info, err := fsentry.Info()
if err != nil {
return err
}
// Perform provided walk function
return opts.WalkFn(ctx, Entry{
Key: st.config.Transform.PathToKey(kpath),
Size: info.Size(),
})
})
}
// filepath checks and returns a formatted filepath for given key
// filepath checks and returns a formatted filepath for given key.
func (st *DiskStorage) filepath(key string) (string, error) {
// Calculate transformed key path
key = st.config.Transform.KeyToPath(key)
@ -382,7 +407,7 @@ func (st *DiskStorage) filepath(key string) (string, error) {
}
// isDirTraversal will check if rootPlusPath is a dir traversal outside of root,
// assuming that both are cleaned and that rootPlusPath is path.Join(root, somePath)
// assuming that both are cleaned and that rootPlusPath is path.Join(root, somePath).
func isDirTraversal(root, rootPlusPath string) bool {
switch {
// Root is $PWD, check for traversal out of

View File

@ -2,38 +2,34 @@ package storage
import (
"errors"
"strings"
"syscall"
"github.com/minio/minio-go/v7"
)
var (
// ErrClosed is returned on operations on a closed storage
ErrClosed = errors.New("store/storage: closed")
ErrClosed = new_error("closed")
// ErrNotFound is the error returned when a key cannot be found in storage
ErrNotFound = errors.New("store/storage: key not found")
ErrNotFound = new_error("key not found")
// ErrAlreadyExist is the error returned when a key already exists in storage
ErrAlreadyExists = errors.New("store/storage: key already exists")
ErrAlreadyExists = new_error("key already exists")
// ErrInvalidkey is the error returned when an invalid key is passed to storage
ErrInvalidKey = errors.New("store/storage: invalid key")
ErrInvalidKey = new_error("invalid key")
// ErrAlreadyLocked is returned on fail opening a storage lockfile
ErrAlreadyLocked = errors.New("store/storage: storage lock already open")
// errPathIsFile is returned when a path for a disk config is actually a file
errPathIsFile = errors.New("store/storage: path is file")
// errNoHashesWritten is returned when no blocks are written for given input value
errNoHashesWritten = errors.New("storage/storage: no hashes written")
// errInvalidNode is returned when read on an invalid node in the store is attempted
errInvalidNode = errors.New("store/storage: invalid node")
// errCorruptNode is returned when a block fails to be opened / read during read of a node.
errCorruptNode = errors.New("store/storage: corrupted node")
ErrAlreadyLocked = new_error("storage lock already open")
)
// new_error returns a new error instance prefixed by package prefix.
func new_error(msg string) error {
return errors.New("store/storage: " + msg)
}
// wrappedError allows wrapping together an inner with outer error.
type wrappedError struct {
inner error
@ -88,3 +84,27 @@ func errSwapUnavailable(err error) error {
}
return err
}
// transformS3Error transforms an error returned from S3Storage underlying
// minio.Core client, by wrapping where necessary with our own error types.
func transformS3Error(err error) error {
// Cast this to a minio error response
ersp, ok := err.(minio.ErrorResponse)
if ok {
switch ersp.Code {
case "NoSuchKey":
return wrap(ErrNotFound, err)
case "Conflict":
return wrap(ErrAlreadyExists, err)
default:
return err
}
}
// Check if error has an invalid object name prefix
if strings.HasPrefix(err.Error(), "Object name ") {
return wrap(ErrInvalidKey, err)
}
return err
}

221
vendor/codeberg.org/gruf/go-store/v2/storage/fs.go generated vendored Normal file
View File

@ -0,0 +1,221 @@
package storage
import (
"io/fs"
"os"
"syscall"
"codeberg.org/gruf/go-fastpath"
"codeberg.org/gruf/go-store/v2/util"
)
const (
// default file permission bits
defaultDirPerms = 0o755
defaultFilePerms = 0o644
// default file open flags
defaultFileROFlags = syscall.O_RDONLY
defaultFileRWFlags = syscall.O_CREAT | syscall.O_RDWR
defaultFileLockFlags = syscall.O_RDONLY | syscall.O_CREAT
)
// NOTE:
// These functions are for opening storage files,
// not necessarily for e.g. initial setup (OpenFile)
// walkDir traverses the dir tree of the supplied path, performing the supplied walkFn on each entry
func walkDir(pb *fastpath.Builder, path string, walkFn func(string, fs.DirEntry) error) error {
// Read directory entries
entries, err := readDir(path)
if err != nil {
return err
}
// frame represents a directory entry
// walk-loop snapshot, taken when a sub
// directory requiring iteration is found
type frame struct {
path string
entries []fs.DirEntry
}
// stack contains a list of held snapshot
// frames, representing unfinished upper
// layers of a directory structure yet to
// be traversed.
var stack []frame
outer:
for {
if len(entries) == 0 {
if len(stack) == 0 {
// Reached end
break outer
}
// Pop frame from stack
frame := stack[len(stack)-1]
stack = stack[:len(stack)-1]
// Update loop vars
entries = frame.entries
path = frame.path
}
for len(entries) > 0 {
// Pop next entry from queue
entry := entries[0]
entries = entries[1:]
// Pass to provided walk function
if err := walkFn(path, entry); err != nil {
return err
}
if entry.IsDir() {
// Push current frame to stack
stack = append(stack, frame{
path: path,
entries: entries,
})
// Update current directory path
path = pb.Join(path, entry.Name())
// Read next directory entries
next, err := readDir(path)
if err != nil {
return err
}
// Set next entries
entries = next
continue outer
}
}
}
return nil
}
// cleanDirs traverses the dir tree of the supplied path, removing any folders with zero children
func cleanDirs(path string) error {
// Acquire path builder
pb := util.GetPathBuilder()
defer util.PutPathBuilder(pb)
// Get top-level dir entries
entries, err := readDir(path)
if err != nil {
return err
}
for _, entry := range entries {
if entry.IsDir() {
// Recursively clean sub-directory entries
if err := cleanDir(pb, pb.Join(path, entry.Name())); err != nil {
return err
}
}
}
return nil
}
// cleanDir performs the actual dir cleaning logic for the above top-level version.
func cleanDir(pb *fastpath.Builder, path string) error {
// Get dir entries
entries, err := readDir(path)
if err != nil {
return err
}
// If no entries, delete
if len(entries) < 1 {
return rmdir(path)
}
for _, entry := range entries {
if entry.IsDir() {
// Recursively clean sub-directory entries
if err := cleanDir(pb, pb.Join(path, entry.Name())); err != nil {
return err
}
}
}
return nil
}
// readDir will open file at path, read the unsorted list of entries, then close.
func readDir(path string) ([]fs.DirEntry, error) {
// Open file at path
file, err := open(path, defaultFileROFlags)
if err != nil {
return nil, err
}
// Read directory entries
entries, err := file.ReadDir(-1)
// Done with file
_ = file.Close()
return entries, err
}
// open will open a file at the given path with flags and default file perms.
func open(path string, flags int) (*os.File, error) {
var fd int
err := retryOnEINTR(func() (err error) {
fd, err = syscall.Open(path, flags, defaultFilePerms)
return
})
if err != nil {
return nil, err
}
return os.NewFile(uintptr(fd), path), nil
}
// stat checks for a file on disk.
func stat(path string) (bool, error) {
var stat syscall.Stat_t
err := retryOnEINTR(func() error {
return syscall.Stat(path, &stat)
})
if err != nil {
if err == syscall.ENOENT {
// not-found is no error
err = nil
}
return false, err
}
return true, nil
}
// unlink removes a file (not dir!) on disk.
func unlink(path string) error {
return retryOnEINTR(func() error {
return syscall.Unlink(path)
})
}
// rmdir removes a dir (not file!) on disk.
func rmdir(path string) error {
return retryOnEINTR(func() error {
return syscall.Rmdir(path)
})
}
// retryOnEINTR is a low-level filesystem function for retrying syscalls on O_EINTR received.
func retryOnEINTR(do func() error) error {
for {
err := do()
if err == syscall.EINTR {
continue
}
return err
}
}

View File

@ -1,11 +1,8 @@
package storage
import (
"sync"
"sync/atomic"
"syscall"
"codeberg.org/gruf/go-store/util"
)
// LockFile is our standard lockfile name.
@ -14,7 +11,6 @@ const LockFile = "store.lock"
// Lock represents a filesystem lock to ensure only one storage instance open per path.
type Lock struct {
fd int
wg sync.WaitGroup
st uint32
}
@ -23,7 +19,7 @@ func OpenLock(path string) (*Lock, error) {
var fd int
// Open the file descriptor at path
err := util.RetryOnEINTR(func() (err error) {
err := retryOnEINTR(func() (err error) {
fd, err = syscall.Open(path, defaultFileLockFlags, defaultFilePerms)
return
})
@ -32,7 +28,7 @@ func OpenLock(path string) (*Lock, error) {
}
// Get a flock on the file descriptor
err = util.RetryOnEINTR(func() error {
err = retryOnEINTR(func() error {
return syscall.Flock(fd, syscall.LOCK_EX|syscall.LOCK_NB)
})
if err != nil {
@ -42,28 +38,15 @@ func OpenLock(path string) (*Lock, error) {
return &Lock{fd: fd}, nil
}
// Add will add '1' to the underlying sync.WaitGroup.
func (f *Lock) Add() {
f.wg.Add(1)
}
// Done will decrememnt '1' from the underlying sync.WaitGroup.
func (f *Lock) Done() {
f.wg.Done()
}
// Close will attempt to close the lockfile and file descriptor.
func (f *Lock) Close() error {
var err error
if atomic.CompareAndSwapUint32(&f.st, 0, 1) {
// Wait until done
f.wg.Wait()
// Ensure gets closed
defer syscall.Close(f.fd)
// Call funlock on the file descriptor
err = util.RetryOnEINTR(func() error {
err = retryOnEINTR(func() error {
return syscall.Flock(f.fd, syscall.LOCK_UN|syscall.LOCK_NB)
})
}

228
vendor/codeberg.org/gruf/go-store/v2/storage/memory.go generated vendored Normal file
View File

@ -0,0 +1,228 @@
package storage
import (
"context"
"io"
"sync/atomic"
"codeberg.org/gruf/go-bytes"
"codeberg.org/gruf/go-store/v2/util"
"github.com/cornelk/hashmap"
)
// MemoryStorage is a storage implementation that simply stores key-value
// pairs in a Go map in-memory. The map is protected by a mutex.
type MemoryStorage struct {
ow bool // overwrites
fs *hashmap.Map[string, []byte]
st uint32
}
// OpenMemory opens a new MemoryStorage instance with internal map starting size.
func OpenMemory(size int, overwrites bool) *MemoryStorage {
if size <= 0 {
size = 8
}
return &MemoryStorage{
fs: hashmap.NewSized[string, []byte](uintptr(size)),
ow: overwrites,
}
}
// Clean implements Storage.Clean().
func (st *MemoryStorage) Clean(ctx context.Context) error {
// Check store open
if st.closed() {
return ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return err
}
return nil
}
// ReadBytes implements Storage.ReadBytes().
func (st *MemoryStorage) ReadBytes(ctx context.Context, key string) ([]byte, error) {
// Check store open
if st.closed() {
return nil, ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return nil, err
}
// Check for key in store
b, ok := st.fs.Get(key)
if !ok {
return nil, ErrNotFound
}
// Create return copy
return copyb(b), nil
}
// ReadStream implements Storage.ReadStream().
func (st *MemoryStorage) ReadStream(ctx context.Context, key string) (io.ReadCloser, error) {
// Check store open
if st.closed() {
return nil, ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return nil, err
}
// Check for key in store
b, ok := st.fs.Get(key)
if !ok {
return nil, ErrNotFound
}
// Create io.ReadCloser from 'b' copy
r := bytes.NewReader(copyb(b))
return util.NopReadCloser(r), nil
}
// WriteBytes implements Storage.WriteBytes().
func (st *MemoryStorage) WriteBytes(ctx context.Context, key string, b []byte) error {
// Check store open
if st.closed() {
return ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return err
}
// Check for key that already exists
if _, ok := st.fs.Get(key); ok && !st.ow {
return ErrAlreadyExists
}
// Write key copy to store
st.fs.Set(key, copyb(b))
return nil
}
// WriteStream implements Storage.WriteStream().
func (st *MemoryStorage) WriteStream(ctx context.Context, key string, r io.Reader) error {
// Check store open
if st.closed() {
return ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return err
}
// Check for key that already exists
if _, ok := st.fs.Get(key); ok && !st.ow {
return ErrAlreadyExists
}
// Read all from reader
b, err := io.ReadAll(r)
if err != nil {
return err
}
// Write key to store
st.fs.Set(key, b)
return nil
}
// Stat implements Storage.Stat().
func (st *MemoryStorage) Stat(ctx context.Context, key string) (bool, error) {
// Check store open
if st.closed() {
return false, ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return false, err
}
// Check for key in store
_, ok := st.fs.Get(key)
return ok, nil
}
// Remove implements Storage.Remove().
func (st *MemoryStorage) Remove(ctx context.Context, key string) error {
// Check store open
if st.closed() {
return ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return err
}
// Attempt to delete key
ok := st.fs.Del(key)
if !ok {
return ErrNotFound
}
return nil
}
// WalkKeys implements Storage.WalkKeys().
func (st *MemoryStorage) WalkKeys(ctx context.Context, opts WalkKeysOptions) error {
// Check store open
if st.closed() {
return ErrClosed
}
// Check context still valid
if err := ctx.Err(); err != nil {
return err
}
var err error
// Nil check func
_ = opts.WalkFn
// Pass each key in map to walk function
st.fs.Range(func(key string, val []byte) bool {
err = opts.WalkFn(ctx, Entry{
Key: key,
Size: int64(len(val)),
})
return (err == nil)
})
return err
}
// Close implements Storage.Close().
func (st *MemoryStorage) Close() error {
atomic.StoreUint32(&st.st, 1)
return nil
}
// closed returns whether MemoryStorage is closed.
func (st *MemoryStorage) closed() bool {
return (atomic.LoadUint32(&st.st) == 1)
}
// copyb returns a copy of byte-slice b.
func copyb(b []byte) []byte {
if b == nil {
return nil
}
p := make([]byte, len(b))
_ = copy(p, b)
return p
}

385
vendor/codeberg.org/gruf/go-store/v2/storage/s3.go generated vendored Normal file
View File

@ -0,0 +1,385 @@
package storage
import (
"bytes"
"context"
"io"
"sync/atomic"
"codeberg.org/gruf/go-store/v2/util"
"github.com/minio/minio-go/v7"
)
// DefaultS3Config is the default S3Storage configuration.
var DefaultS3Config = &S3Config{
CoreOpts: minio.Options{},
GetOpts: minio.GetObjectOptions{},
PutOpts: minio.PutObjectOptions{},
PutChunkSize: 4 * 1024 * 1024, // 4MiB
StatOpts: minio.StatObjectOptions{},
RemoveOpts: minio.RemoveObjectOptions{},
ListSize: 200,
}
// S3Config defines options to be used when opening an S3Storage,
// mostly options for underlying S3 client library.
type S3Config struct {
// CoreOpts are S3 client options passed during initialization.
CoreOpts minio.Options
// GetOpts are S3 client options passed during .Read___() calls.
GetOpts minio.GetObjectOptions
// PutOpts are S3 client options passed during .Write___() calls.
PutOpts minio.PutObjectOptions
// PutChunkSize is the chunk size (in bytes) to use when sending
// a byte stream reader of unknown size as a multi-part object.
PutChunkSize int64
// StatOpts are S3 client options passed during .Stat() calls.
StatOpts minio.StatObjectOptions
// RemoveOpts are S3 client options passed during .Remove() calls.
RemoveOpts minio.RemoveObjectOptions
// ListSize determines how many items to include in each
// list request, made during calls to .WalkKeys().
ListSize int
}
// getS3Config returns a valid S3Config for supplied ptr.
func getS3Config(cfg *S3Config) S3Config {
// If nil, use default
if cfg == nil {
cfg = DefaultS3Config
}
// Assume 0 chunk size == use default
if cfg.PutChunkSize <= 0 {
cfg.PutChunkSize = 4 * 1024 * 1024
}
// Assume 0 list size == use default
if cfg.ListSize <= 0 {
cfg.ListSize = 200
}
// Return owned config copy
return S3Config{
CoreOpts: cfg.CoreOpts,
GetOpts: cfg.GetOpts,
PutOpts: cfg.PutOpts,
StatOpts: cfg.StatOpts,
RemoveOpts: cfg.RemoveOpts,
}
}
// S3Storage is a storage implementation that stores key-value
// pairs in an S3 instance at given endpoint with bucket name.
type S3Storage struct {
client *minio.Core
bucket string
config S3Config
state uint32
}
// OpenS3 opens a new S3Storage instance with given S3 endpoint URL, bucket name and configuration.
func OpenS3(endpoint string, bucket string, cfg *S3Config) (*S3Storage, error) {
// Get checked config
config := getS3Config(cfg)
// Create new S3 client connection
client, err := minio.NewCore(endpoint, &config.CoreOpts)
if err != nil {
return nil, err
}
// Check that provided bucket actually exists
exists, err := client.BucketExists(context.Background(), bucket)
if err != nil {
return nil, err
} else if !exists {
return nil, new_error("bucket does not exist")
}
return &S3Storage{
client: client,
bucket: bucket,
config: config,
}, nil
}
// Client returns access to the underlying S3 client.
func (st *S3Storage) Client() *minio.Core {
return st.client
}
// Clean implements Storage.Clean().
func (st *S3Storage) Clean(ctx context.Context) error {
return nil // nothing to do for S3
}
// ReadBytes implements Storage.ReadBytes().
func (st *S3Storage) ReadBytes(ctx context.Context, key string) ([]byte, error) {
// Fetch object reader from S3 bucket
rc, err := st.ReadStream(ctx, key)
if err != nil {
return nil, err
}
defer rc.Close()
// Read all bytes and return
return io.ReadAll(rc)
}
// ReadStream implements Storage.ReadStream().
func (st *S3Storage) ReadStream(ctx context.Context, key string) (io.ReadCloser, error) {
// Check storage open
if st.closed() {
return nil, ErrClosed
}
// Fetch object reader from S3 bucket
rc, _, _, err := st.client.GetObject(
ctx,
st.bucket,
key,
st.config.GetOpts,
)
if err != nil {
return nil, transformS3Error(err)
}
return rc, nil
}
// WriteBytes implements Storage.WriteBytes().
func (st *S3Storage) WriteBytes(ctx context.Context, key string, value []byte) error {
return st.WriteStream(ctx, key, util.NewByteReaderSize(value))
}
// WriteStream implements Storage.WriteStream().
func (st *S3Storage) WriteStream(ctx context.Context, key string, r io.Reader) error {
// Check storage open
if st.closed() {
return ErrClosed
}
if rs, ok := r.(util.ReaderSize); ok {
// This reader supports providing us the size of
// the encompassed data, allowing us to perform
// a singular .PutObject() call with length.
_, err := st.client.PutObject(
ctx,
st.bucket,
key,
r,
rs.Size(),
"",
"",
st.config.PutOpts,
)
if err != nil {
return transformS3Error(err)
}
return nil
}
// Start a new multipart upload to get ID
uploadID, err := st.client.NewMultipartUpload(
ctx,
st.bucket,
key,
st.config.PutOpts,
)
if err != nil {
return transformS3Error(err)
}
var (
count int
parts []minio.CompletePart
chunk = make([]byte, st.config.PutChunkSize)
rdr = bytes.NewReader(nil)
)
// Note that we do not perform any kind of
// memory pooling of the chunk buffers here.
// Optimal chunking sizes for S3 writes are in
// the orders of megabytes, so letting the GC
// collect these ASAP is much preferred.
loop:
for done := false; !done; {
// Read next chunk into byte buffer
n, err := io.ReadFull(r, chunk)
switch err {
// Successful read
case nil:
// Reached end, buffer empty
case io.EOF:
break loop
// Reached end, but buffer not empty
case io.ErrUnexpectedEOF:
done = true
// All other errors
default:
return err
}
// Reset byte reader
rdr.Reset(chunk[:n])
// Put this object chunk in S3 store
pt, err := st.client.PutObjectPart(
ctx,
st.bucket,
key,
uploadID,
count,
rdr,
st.config.PutChunkSize,
"",
"",
nil,
)
if err != nil {
return err
}
// Append completed part to slice
parts = append(parts, minio.CompletePart{
PartNumber: pt.PartNumber,
ETag: pt.ETag,
ChecksumCRC32: pt.ChecksumCRC32,
ChecksumCRC32C: pt.ChecksumCRC32C,
ChecksumSHA1: pt.ChecksumSHA1,
ChecksumSHA256: pt.ChecksumSHA256,
})
// Iterate part count
count++
}
// Complete this multi-part upload operation
_, err = st.client.CompleteMultipartUpload(
ctx,
st.bucket,
key,
uploadID,
parts,
st.config.PutOpts,
)
if err != nil {
return err
}
return nil
}
// Stat implements Storage.Stat().
func (st *S3Storage) Stat(ctx context.Context, key string) (bool, error) {
// Check storage open
if st.closed() {
return false, ErrClosed
}
// Query object in S3 bucket
_, err := st.client.StatObject(
ctx,
st.bucket,
key,
st.config.StatOpts,
)
if err != nil {
return false, transformS3Error(err)
}
return true, nil
}
// Remove implements Storage.Remove().
func (st *S3Storage) Remove(ctx context.Context, key string) error {
// Check storage open
if st.closed() {
return ErrClosed
}
// S3 returns no error on remove for non-existent keys
if ok, err := st.Stat(ctx, key); err != nil {
return err
} else if !ok {
return ErrNotFound
}
// Remove object from S3 bucket
err := st.client.RemoveObject(
ctx,
st.bucket,
key,
st.config.RemoveOpts,
)
if err != nil {
return transformS3Error(err)
}
return nil
}
// WalkKeys implements Storage.WalkKeys().
func (st *S3Storage) WalkKeys(ctx context.Context, opts WalkKeysOptions) error {
var (
prev string
token string
)
for {
// List the objects in bucket starting at marker
result, err := st.client.ListObjectsV2(
st.bucket,
"",
prev,
token,
"",
st.config.ListSize,
)
if err != nil {
return err
}
// Pass each object through walk func
for _, obj := range result.Contents {
if err := opts.WalkFn(ctx, Entry{
Key: obj.Key,
Size: obj.Size,
}); err != nil {
return err
}
}
// No token means we reached end of bucket
if result.NextContinuationToken == "" {
return nil
}
// Set continue token and prev mark
token = result.NextContinuationToken
prev = result.StartAfter
}
}
// Close implements Storage.Close().
func (st *S3Storage) Close() error {
atomic.StoreUint32(&st.state, 1)
return nil
}
// closed returns whether S3Storage is closed.
func (st *S3Storage) closed() bool {
return (atomic.LoadUint32(&st.state) == 1)
}

View File

@ -1,54 +1,53 @@
package storage
import (
"context"
"io"
)
// StorageEntry defines a key in Storage
type StorageEntry interface {
// Key returns the storage entry's key
Key() string
}
// entry is the simplest possible StorageEntry
type entry string
func (e entry) Key() string {
return string(e)
}
// Storage defines a means of storing and accessing key value pairs
type Storage interface {
// ReadBytes returns the byte value for key in storage
ReadBytes(key string) ([]byte, error)
ReadBytes(ctx context.Context, key string) ([]byte, error)
// ReadStream returns an io.ReadCloser for the value bytes at key in the storage
ReadStream(key string) (io.ReadCloser, error)
ReadStream(ctx context.Context, key string) (io.ReadCloser, error)
// WriteBytes writes the supplied value bytes at key in the storage
WriteBytes(key string, value []byte) error
WriteBytes(ctx context.Context, key string, value []byte) error
// WriteStream writes the bytes from supplied reader at key in the storage
WriteStream(key string, r io.Reader) error
WriteStream(ctx context.Context, key string, r io.Reader) error
// Stat checks if the supplied key is in the storage
Stat(key string) (bool, error)
Stat(ctx context.Context, key string) (bool, error)
// Remove attempts to remove the supplied key-value pair from storage
Remove(key string) error
Remove(ctx context.Context, key string) error
// Close will close the storage, releasing any file locks
Close() error
// Clean removes unused values and unclutters the storage (e.g. removing empty folders)
Clean() error
Clean(ctx context.Context) error
// WalkKeys walks the keys in the storage
WalkKeys(opts WalkKeysOptions) error
WalkKeys(ctx context.Context, opts WalkKeysOptions) error
}
// Entry represents a key in a Storage{} implementation,
// with any associated metadata that may have been set.
type Entry struct {
// Key is this entry's unique storage key.
Key string
// Size is the size of this entry in storage.
// Note that size < 0 indicates unknown.
Size int64
}
// WalkKeysOptions defines how to walk the keys in a storage implementation
type WalkKeysOptions struct {
// WalkFn is the function to apply on each StorageEntry
WalkFn func(StorageEntry)
WalkFn func(context.Context, Entry) error
}

96
vendor/codeberg.org/gruf/go-store/v2/util/io.go generated vendored Normal file
View File

@ -0,0 +1,96 @@
package util
import (
"bytes"
"io"
)
// ReaderSize ...
type ReaderSize interface {
io.Reader
// Size ...
Size() int64
}
// ByteReaderSize ...
type ByteReaderSize struct {
bytes.Reader
sz int64
}
// NewByteReaderSize ...
func NewByteReaderSize(b []byte) *ByteReaderSize {
rs := ByteReaderSize{}
rs.Reset(b)
return &rs
}
// Size implements ReaderSize.Size().
func (rs ByteReaderSize) Size() int64 {
return rs.sz
}
// Reset resets the ReaderSize to be reading from b.
func (rs *ByteReaderSize) Reset(b []byte) {
rs.Reader.Reset(b)
rs.sz = int64(len(b))
}
// NopReadCloser turns a supplied io.Reader into io.ReadCloser with a nop Close() implementation.
func NopReadCloser(r io.Reader) io.ReadCloser {
return &nopReadCloser{r}
}
// NopWriteCloser turns a supplied io.Writer into io.WriteCloser with a nop Close() implementation.
func NopWriteCloser(w io.Writer) io.WriteCloser {
return &nopWriteCloser{w}
}
// ReadCloserWithCallback adds a customizable callback to be called upon Close() of a supplied io.ReadCloser.
func ReadCloserWithCallback(rc io.ReadCloser, cb func()) io.ReadCloser {
return &callbackReadCloser{
ReadCloser: rc,
callback: cb,
}
}
// WriteCloserWithCallback adds a customizable callback to be called upon Close() of a supplied io.WriteCloser.
func WriteCloserWithCallback(wc io.WriteCloser, cb func()) io.WriteCloser {
return &callbackWriteCloser{
WriteCloser: wc,
callback: cb,
}
}
// nopReadCloser turns an io.Reader -> io.ReadCloser with a nop Close().
type nopReadCloser struct{ io.Reader }
func (r *nopReadCloser) Close() error { return nil }
// nopWriteCloser turns an io.Writer -> io.WriteCloser with a nop Close().
type nopWriteCloser struct{ io.Writer }
func (w nopWriteCloser) Close() error { return nil }
// callbackReadCloser allows adding our own custom callback to an io.ReadCloser.
type callbackReadCloser struct {
io.ReadCloser
callback func()
}
func (c *callbackReadCloser) Close() error {
defer c.callback()
return c.ReadCloser.Close()
}
// callbackWriteCloser allows adding our own custom callback to an io.WriteCloser.
type callbackWriteCloser struct {
io.WriteCloser
callback func()
}
func (c *callbackWriteCloser) Close() error {
defer c.callback()
return c.WriteCloser.Close()
}

View File

@ -5,15 +5,15 @@ import (
"codeberg.org/gruf/go-pools"
)
// pathBuilderPool is the global fastpath.Builder pool
// pathBuilderPool is the global fastpath.Builder pool.
var pathBuilderPool = pools.NewPathBuilderPool(512)
// GetPathBuilder fetches a fastpath.Builder object from the pool
// GetPathBuilder fetches a fastpath.Builder object from the pool.
func GetPathBuilder() *fastpath.Builder {
return pathBuilderPool.Get()
}
// PutPathBuilder places supplied fastpath.Builder back in the pool
// PutPathBuilder places supplied fastpath.Builder back in the pool.
func PutPathBuilder(pb *fastpath.Builder) {
pb.Reset()
pathBuilderPool.Put(pb)

6
vendor/github.com/cornelk/hashmap/.codecov.yml generated vendored Normal file
View File

@ -0,0 +1,6 @@
coverage:
status:
project:
default:
target: 70%
threshold: 5%

14
vendor/github.com/cornelk/hashmap/.gitignore generated vendored Normal file
View File

@ -0,0 +1,14 @@
*.exe
.idea
.vscode
*.iml
*.local
/*.log
*.out
*.prof
*.test
.DS_Store
*.dmp
*.db
.testCoverage

68
vendor/github.com/cornelk/hashmap/.golangci.yml generated vendored Normal file
View File

@ -0,0 +1,68 @@
run:
deadline: 5m
linters:
enable:
- asasalint # check for pass []any as any in variadic func(...any)
- asciicheck # Simple linter to check that your code does not contain non-ASCII identifiers
- bidichk # Checks for dangerous unicode character sequences
- containedctx # detects struct contained context.Context field
- contextcheck # check the function whether use a non-inherited context
- cyclop # checks function and package cyclomatic complexity
- decorder # check declaration order and count of types, constants, variables and functions
- depguard # Go linter that checks if package imports are in a list of acceptable packages
- dogsled # Checks assignments with too many blank identifiers (e.g. x, _, _, _, := f())
- durationcheck # check for two durations multiplied together
- errcheck # checking for unchecked errors
- errname # Checks that errors are prefixed with the `Err` and error types are suffixed with the `Error`
- errorlint # finds code that will cause problems with the error wrapping scheme introduced in Go 1.13
- exportloopref # checks for pointers to enclosing loop variables
- funlen # Tool for detection of long functions
- gci # controls golang package import order and makes it always deterministic
- gocognit # Computes and checks the cognitive complexity of functions
- gocritic # Provides diagnostics that check for bugs, performance and style issues
- gocyclo # Computes and checks the cyclomatic complexity of functions
- godot # Check if comments end in a period
- goerr113 # Golang linter to check the errors handling expressions
- gosimple # Linter for Go source code that specializes in simplifying a code
- govet # reports suspicious constructs, such as Printf calls with wrong arguments
- ineffassign # Detects when assignments to existing variables are not used
- maintidx # measures the maintainability index of each function
- makezero # Finds slice declarations with non-zero initial length
- misspell # Finds commonly misspelled English words in comments
- nakedret # Finds naked returns in functions
- nestif # Reports deeply nested if statements
- nilerr # Finds the code that returns nil even if it checks that the error is not nil
- nilnil # Checks that there is no simultaneous return of `nil` error and an invalid value
- prealloc # Finds slice declarations that could potentially be preallocated
- predeclared # find code that shadows one of Go's predeclared identifiers
- revive # drop-in replacement of golint
- staticcheck # drop-in replacement of go vet
- stylecheck # Stylecheck is a replacement for golint
- tenv # detects using os.Setenv instead of t.Setenv
- thelper # checks the consistency of test helpers
- tparallel # detects inappropriate usage of t.Parallel()
- typecheck # parses and type-checks Go code
- unconvert # Remove unnecessary type conversions
- unparam # Reports unused function parameters
- unused # Checks Go code for unused constants, variables, functions and types
- usestdlibvars # detect the possibility to use variables/constants from the Go standard library
- wastedassign # finds wasted assignment statements
- whitespace # detects leading and trailing whitespace
linters-settings:
cyclop:
max-complexity: 15
gocritic:
disabled-checks:
- newDeref
govet:
disable:
- unsafeptr
issues:
exclude-use-default: false
exclude-rules:
- linters:
- goerr113
text: "do not define dynamic errors"

201
vendor/github.com/cornelk/hashmap/LICENSE generated vendored Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright cornelk
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

25
vendor/github.com/cornelk/hashmap/Makefile generated vendored Normal file
View File

@ -0,0 +1,25 @@
help: ## show help, shown by default if no target is specified
@grep -E '^[0-9a-zA-Z_-]+:.*?## .*$$' $(MAKEFILE_LIST) | sort | awk 'BEGIN {FS = ":.*?## "}; {printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}'
lint: ## run code linters
golangci-lint run
benchmark: ## run benchmarks
cd benchmarks && perflock go test -cpu 8 -run=^# -bench=.
benchmark-perflock: ## run benchmarks using perflock - https://github.com/aclements/perflock
cd benchmarks && perflock -governor 80% go test -count 3 -cpu 8 -run=^# -bench=.
test: ## run tests
go test -race ./...
GOARCH=386 go test ./...
test-coverage: ## run unit tests and create test coverage
go test ./... -coverprofile .testCoverage -covermode=atomic -coverpkg=./...
test-coverage-web: test-coverage ## run unit tests and show test coverage in browser
go tool cover -func .testCoverage | grep total | awk '{print "Total coverage: "$$3}'
go tool cover -html=.testCoverage
install-linters: ## install all used linters
curl -sSfL https://raw.githubusercontent.com/golangci/golangci-lint/master/install.sh | sh -s -- -b $$(go env GOPATH)/bin v1.49.0

88
vendor/github.com/cornelk/hashmap/README.md generated vendored Normal file
View File

@ -0,0 +1,88 @@
# hashmap
[![Build status](https://github.com/cornelk/hashmap/actions/workflows/go.yaml/badge.svg?branch=main)](https://github.com/cornelk/hashmap/actions)
[![go.dev reference](https://img.shields.io/badge/go.dev-reference-007d9c?logo=go&logoColor=white&style=flat-square)](https://pkg.go.dev/github.com/cornelk/hashmap)
[![Go Report Card](https://goreportcard.com/badge/github.com/cornelk/hashmap)](https://goreportcard.com/report/github.com/cornelk/hashmap)
[![codecov](https://codecov.io/gh/cornelk/hashmap/branch/main/graph/badge.svg?token=NS5UY28V3A)](https://codecov.io/gh/cornelk/hashmap)
## Overview
A Golang lock-free thread-safe HashMap optimized for fastest read access.
It is not a general-use HashMap and currently has slow write performance for write heavy uses.
The minimal supported Golang version is 1.19 as it makes use of Generics and the new atomic package helpers.
## Usage
Example uint8 key map uses:
```
m := New[uint8, int]()
m.Set(1, 123)
value, ok := m.Get(1)
```
Example string key map uses:
```
m := New[string, int]()
m.Set("amount", 123)
value, ok := m.Get("amount")
```
Using the map to count URL requests:
```
m := New[string, *int64]()
var i int64
counter, _ := m.GetOrInsert("api/123", &i)
atomic.AddInt64(counter, 1) // increase counter
...
count := atomic.LoadInt64(counter) // read counter
```
## Benchmarks
Reading from the hash map for numeric key types in a thread-safe way is faster than reading from a standard Golang map
in an unsafe way and four times faster than Golang's `sync.Map`:
```
BenchmarkReadHashMapUint-8 1774460 677.3 ns/op
BenchmarkReadHaxMapUint-8 1758708 679.0 ns/op
BenchmarkReadGoMapUintUnsafe-8 1497732 790.9 ns/op
BenchmarkReadGoMapUintMutex-8 41562 28672 ns/op
BenchmarkReadGoSyncMapUint-8 454401 2646 ns/op
```
Reading from the map while writes are happening:
```
BenchmarkReadHashMapWithWritesUint-8 1388560 859.1 ns/op
BenchmarkReadHaxMapWithWritesUint-8 1306671 914.5 ns/op
BenchmarkReadGoSyncMapWithWritesUint-8 335732 3113 ns/op
```
Write performance without any concurrent reads:
```
BenchmarkWriteHashMapUint-8 54756 21977 ns/op
BenchmarkWriteGoMapMutexUint-8 83907 14827 ns/op
BenchmarkWriteGoSyncMapUint-8 16983 70305 ns/op
```
The benchmarks were run with Golang 1.19.0 on Linux and AMD64 using `make benchmark`.
## Technical details
* Technical design decisions have been made based on benchmarks that are stored in an external repository:
[go-benchmark](https://github.com/cornelk/go-benchmark)
* The library uses a sorted linked list and a slice as an index into that list.
* The Get() function contains helper functions that have been inlined manually until the Golang compiler will inline them automatically.
* It optimizes the slice access by circumventing the Golang size check when reading from the slice.
Once a slice is allocated, the size of it does not change.
The library limits the index into the slice, therefore the Golang size check is obsolete.
When the slice reaches a defined fill rate, a bigger slice is allocated and all keys are recalculated and transferred into the new slice.
* For hashing, specialized xxhash implementations are used that match the size of the key type where available

12
vendor/github.com/cornelk/hashmap/defines.go generated vendored Normal file
View File

@ -0,0 +1,12 @@
package hashmap
// defaultSize is the default size for a map.
const defaultSize = 8
// maxFillRate is the maximum fill rate for the slice before a resize will happen.
const maxFillRate = 50
// support all numeric and string types and aliases of those.
type hashable interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 | ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | ~float32 | ~float64 | ~string
}

348
vendor/github.com/cornelk/hashmap/hashmap.go generated vendored Normal file
View File

@ -0,0 +1,348 @@
// Package hashmap provides a lock-free and thread-safe HashMap.
package hashmap
import (
"bytes"
"fmt"
"reflect"
"strconv"
"sync/atomic"
"unsafe"
)
// Map implements a read optimized hash map.
type Map[Key hashable, Value any] struct {
hasher func(Key) uintptr
store atomic.Pointer[store[Key, Value]] // pointer to a map instance that gets replaced if the map resizes
linkedList *List[Key, Value] // key sorted linked list of elements
// resizing marks a resizing operation in progress.
// this is using uintptr instead of atomic.Bool to avoid using 32 bit int on 64 bit systems
resizing atomic.Uintptr
}
// New returns a new map instance.
func New[Key hashable, Value any]() *Map[Key, Value] {
return NewSized[Key, Value](defaultSize)
}
// NewSized returns a new map instance with a specific initialization size.
func NewSized[Key hashable, Value any](size uintptr) *Map[Key, Value] {
m := &Map[Key, Value]{}
m.allocate(size)
m.setDefaultHasher()
return m
}
// SetHasher sets a custom hasher.
func (m *Map[Key, Value]) SetHasher(hasher func(Key) uintptr) {
m.hasher = hasher
}
// Len returns the number of elements within the map.
func (m *Map[Key, Value]) Len() int {
return m.linkedList.Len()
}
// Get retrieves an element from the map under given hash key.
func (m *Map[Key, Value]) Get(key Key) (Value, bool) {
hash := m.hasher(key)
for element := m.store.Load().item(hash); element != nil; element = element.Next() {
if element.keyHash == hash && element.key == key {
return element.Value(), true
}
if element.keyHash > hash {
return *new(Value), false
}
}
return *new(Value), false
}
// GetOrInsert returns the existing value for the key if present.
// Otherwise, it stores and returns the given value.
// The returned bool is true if the value was loaded, false if stored.
func (m *Map[Key, Value]) GetOrInsert(key Key, value Value) (Value, bool) {
hash := m.hasher(key)
var newElement *ListElement[Key, Value]
for {
for element := m.store.Load().item(hash); element != nil; element = element.Next() {
if element.keyHash == hash && element.key == key {
actual := element.Value()
return actual, true
}
if element.keyHash > hash {
break
}
}
if newElement == nil { // allocate only once
newElement = &ListElement[Key, Value]{
key: key,
keyHash: hash,
}
newElement.value.Store(&value)
}
if m.insertElement(newElement, hash, key, value) {
return value, false
}
}
}
// FillRate returns the fill rate of the map as a percentage integer.
func (m *Map[Key, Value]) FillRate() int {
store := m.store.Load()
count := int(store.count.Load())
l := len(store.index)
return (count * 100) / l
}
// Del deletes the key from the map and returns whether the key was deleted.
func (m *Map[Key, Value]) Del(key Key) bool {
hash := m.hasher(key)
store := m.store.Load()
element := store.item(hash)
for ; element != nil; element = element.Next() {
if element.keyHash == hash && element.key == key {
m.deleteElement(element)
m.linkedList.Delete(element)
return true
}
if element.keyHash > hash {
return false
}
}
return false
}
// Insert sets the value under the specified key to the map if it does not exist yet.
// If a resizing operation is happening concurrently while calling Insert, the item might show up in the map
// after the resize operation is finished.
// Returns true if the item was inserted or false if it existed.
func (m *Map[Key, Value]) Insert(key Key, value Value) bool {
hash := m.hasher(key)
var (
existed, inserted bool
element *ListElement[Key, Value]
)
for {
store := m.store.Load()
searchStart := store.item(hash)
if !inserted { // if retrying after insert during grow, do not add to list again
element, existed, inserted = m.linkedList.Add(searchStart, hash, key, value)
if existed {
return false
}
if !inserted {
continue // a concurrent add did interfere, try again
}
}
count := store.addItem(element)
currentStore := m.store.Load()
if store != currentStore { // retry insert in case of insert during grow
continue
}
if m.isResizeNeeded(store, count) && m.resizing.CompareAndSwap(0, 1) {
go m.grow(0, true)
}
return true
}
}
// Set sets the value under the specified key to the map. An existing item for this key will be overwritten.
// If a resizing operation is happening concurrently while calling Set, the item might show up in the map
// after the resize operation is finished.
func (m *Map[Key, Value]) Set(key Key, value Value) {
hash := m.hasher(key)
for {
store := m.store.Load()
searchStart := store.item(hash)
element, added := m.linkedList.AddOrUpdate(searchStart, hash, key, value)
if !added {
continue // a concurrent add did interfere, try again
}
count := store.addItem(element)
currentStore := m.store.Load()
if store != currentStore { // retry insert in case of insert during grow
continue
}
if m.isResizeNeeded(store, count) && m.resizing.CompareAndSwap(0, 1) {
go m.grow(0, true)
}
return
}
}
// Grow resizes the map to a new size, the size gets rounded up to next power of 2.
// To double the size of the map use newSize 0.
// This function returns immediately, the resize operation is done in a goroutine.
// No resizing is done in case of another resize operation already being in progress.
func (m *Map[Key, Value]) Grow(newSize uintptr) {
if m.resizing.CompareAndSwap(0, 1) {
go m.grow(newSize, true)
}
}
// String returns the map as a string, only hashed keys are printed.
func (m *Map[Key, Value]) String() string {
buffer := bytes.NewBufferString("")
buffer.WriteRune('[')
first := m.linkedList.First()
item := first
for item != nil {
if item != first {
buffer.WriteRune(',')
}
fmt.Fprint(buffer, item.keyHash)
item = item.Next()
}
buffer.WriteRune(']')
return buffer.String()
}
// Range calls f sequentially for each key and value present in the map.
// If f returns false, range stops the iteration.
func (m *Map[Key, Value]) Range(f func(Key, Value) bool) {
item := m.linkedList.First()
for item != nil {
value := item.Value()
if !f(item.key, value) {
return
}
item = item.Next()
}
}
func (m *Map[Key, Value]) allocate(newSize uintptr) {
m.linkedList = NewList[Key, Value]()
if m.resizing.CompareAndSwap(0, 1) {
m.grow(newSize, false)
}
}
func (m *Map[Key, Value]) isResizeNeeded(store *store[Key, Value], count uintptr) bool {
l := uintptr(len(store.index)) // l can't be 0 as it gets initialized in New()
fillRate := (count * 100) / l
return fillRate > maxFillRate
}
func (m *Map[Key, Value]) insertElement(element *ListElement[Key, Value], hash uintptr, key Key, value Value) bool {
var existed, inserted bool
for {
store := m.store.Load()
searchStart := store.item(element.keyHash)
if !inserted { // if retrying after insert during grow, do not add to list again
_, existed, inserted = m.linkedList.Add(searchStart, hash, key, value)
if existed {
return false
}
if !inserted {
continue // a concurrent add did interfere, try again
}
}
count := store.addItem(element)
currentStore := m.store.Load()
if store != currentStore { // retry insert in case of insert during grow
continue
}
if m.isResizeNeeded(store, count) && m.resizing.CompareAndSwap(0, 1) {
go m.grow(0, true)
}
return true
}
}
// deleteElement deletes an element from index.
func (m *Map[Key, Value]) deleteElement(element *ListElement[Key, Value]) {
for {
store := m.store.Load()
index := element.keyHash >> store.keyShifts
ptr := (*unsafe.Pointer)(unsafe.Pointer(uintptr(store.array) + index*intSizeBytes))
next := element.Next()
if next != nil && element.keyHash>>store.keyShifts != index {
next = nil // do not set index to next item if it's not the same slice index
}
atomic.CompareAndSwapPointer(ptr, unsafe.Pointer(element), unsafe.Pointer(next))
currentStore := m.store.Load()
if store == currentStore { // check that no resize happened
break
}
}
}
func (m *Map[Key, Value]) grow(newSize uintptr, loop bool) {
defer m.resizing.CompareAndSwap(1, 0)
for {
currentStore := m.store.Load()
if newSize == 0 {
newSize = uintptr(len(currentStore.index)) << 1
} else {
newSize = roundUpPower2(newSize)
}
index := make([]*ListElement[Key, Value], newSize)
header := (*reflect.SliceHeader)(unsafe.Pointer(&index))
newStore := &store[Key, Value]{
keyShifts: strconv.IntSize - log2(newSize),
array: unsafe.Pointer(header.Data), // use address of slice data storage
index: index,
}
m.fillIndexItems(newStore) // initialize new index slice with longer keys
m.store.Store(newStore)
m.fillIndexItems(newStore) // make sure that the new index is up-to-date with the current state of the linked list
if !loop {
return
}
// check if a new resize needs to be done already
count := uintptr(m.Len())
if !m.isResizeNeeded(newStore, count) {
return
}
newSize = 0 // 0 means double the current size
}
}
func (m *Map[Key, Value]) fillIndexItems(store *store[Key, Value]) {
first := m.linkedList.First()
item := first
lastIndex := uintptr(0)
for item != nil {
index := item.keyHash >> store.keyShifts
if item == first || index != lastIndex { // store item with smallest hash key for every index
store.addItem(item)
lastIndex = index
}
item = item.Next()
}
}

127
vendor/github.com/cornelk/hashmap/list.go generated vendored Normal file
View File

@ -0,0 +1,127 @@
package hashmap
import (
"sync/atomic"
)
// List is a sorted linked list.
type List[Key comparable, Value any] struct {
count atomic.Uintptr
head *ListElement[Key, Value]
}
// NewList returns an initialized list.
func NewList[Key comparable, Value any]() *List[Key, Value] {
return &List[Key, Value]{
head: &ListElement[Key, Value]{},
}
}
// Len returns the number of elements within the list.
func (l *List[Key, Value]) Len() int {
return int(l.count.Load())
}
// First returns the first item of the list.
func (l *List[Key, Value]) First() *ListElement[Key, Value] {
return l.head.Next()
}
// Add adds an item to the list and returns false if an item for the hash existed.
// searchStart = nil will start to search at the head item.
func (l *List[Key, Value]) Add(searchStart *ListElement[Key, Value], hash uintptr, key Key, value Value) (element *ListElement[Key, Value], existed bool, inserted bool) {
left, found, right := l.search(searchStart, hash, key)
if found != nil { // existing item found
return found, true, false
}
element = &ListElement[Key, Value]{
key: key,
keyHash: hash,
}
element.value.Store(&value)
return element, false, l.insertAt(element, left, right)
}
// AddOrUpdate adds or updates an item to the list.
func (l *List[Key, Value]) AddOrUpdate(searchStart *ListElement[Key, Value], hash uintptr, key Key, value Value) (*ListElement[Key, Value], bool) {
left, found, right := l.search(searchStart, hash, key)
if found != nil { // existing item found
found.value.Store(&value) // update the value
return found, true
}
element := &ListElement[Key, Value]{
key: key,
keyHash: hash,
}
element.value.Store(&value)
return element, l.insertAt(element, left, right)
}
// Delete deletes an element from the list.
func (l *List[Key, Value]) Delete(element *ListElement[Key, Value]) {
if !element.deleted.CompareAndSwap(0, 1) {
return // concurrent delete of the item is in progress
}
right := element.Next()
// point head to next element if element to delete was head
l.head.next.CompareAndSwap(element, right)
// element left from the deleted element will replace its next
// pointer to the next valid element on call of Next().
l.count.Add(^uintptr(0)) // decrease counter
}
func (l *List[Key, Value]) search(searchStart *ListElement[Key, Value], hash uintptr, key Key) (left, found, right *ListElement[Key, Value]) {
if searchStart != nil && hash < searchStart.keyHash { // key would remain left from item? {
searchStart = nil // start search at head
}
if searchStart == nil { // start search at head?
left = l.head
found = left.Next()
if found == nil { // no items beside head?
return nil, nil, nil
}
} else {
found = searchStart
}
for {
if hash == found.keyHash && key == found.key { // key hash already exists, compare keys
return nil, found, nil
}
if hash < found.keyHash { // new item needs to be inserted before the found value
if l.head == left {
return nil, nil, found
}
return left, nil, found
}
// go to next element in sorted linked list
left = found
found = left.Next()
if found == nil { // no more items on the right
return left, nil, nil
}
}
}
func (l *List[Key, Value]) insertAt(element, left, right *ListElement[Key, Value]) bool {
if left == nil {
left = l.head
}
element.next.Store(right)
if !left.next.CompareAndSwap(right, element) {
return false // item was modified concurrently
}
l.count.Add(1)
return true
}

47
vendor/github.com/cornelk/hashmap/list_element.go generated vendored Normal file
View File

@ -0,0 +1,47 @@
package hashmap
import (
"sync/atomic"
)
// ListElement is an element of a list.
type ListElement[Key comparable, Value any] struct {
keyHash uintptr
// deleted marks the item as deleting or deleted
// this is using uintptr instead of atomic.Bool to avoid using 32 bit int on 64 bit systems
deleted atomic.Uintptr
// next points to the next element in the list.
// it is nil for the last item in the list.
next atomic.Pointer[ListElement[Key, Value]]
value atomic.Pointer[Value]
key Key
}
// Value returns the value of the list item.
func (e *ListElement[Key, Value]) Value() Value {
return *e.value.Load()
}
// Next returns the item on the right.
func (e *ListElement[Key, Value]) Next() *ListElement[Key, Value] {
for next := e.next.Load(); next != nil; {
// if the next item is not deleted, return it
if next.deleted.Load() == 0 {
return next
}
// point current elements next to the following item
// after the deleted one until a non deleted or list end is found
following := next.Next()
if e.next.CompareAndSwap(next, following) {
next = following
} else {
next = next.Next()
}
}
return nil // end of the list reached
}

45
vendor/github.com/cornelk/hashmap/store.go generated vendored Normal file
View File

@ -0,0 +1,45 @@
package hashmap
import (
"sync/atomic"
"unsafe"
)
type store[Key comparable, Value any] struct {
keyShifts uintptr // Pointer size - log2 of array size, to be used as index in the data array
count atomic.Uintptr // count of filled elements in the slice
array unsafe.Pointer // pointer to slice data array
index []*ListElement[Key, Value] // storage for the slice for the garbage collector to not clean it up
}
// item returns the item for the given hashed key.
func (s *store[Key, Value]) item(hashedKey uintptr) *ListElement[Key, Value] {
index := hashedKey >> s.keyShifts
ptr := (*unsafe.Pointer)(unsafe.Pointer(uintptr(s.array) + index*intSizeBytes))
item := (*ListElement[Key, Value])(atomic.LoadPointer(ptr))
return item
}
// adds an item to the index if needed and returns the new item counter if it changed, otherwise 0.
func (s *store[Key, Value]) addItem(item *ListElement[Key, Value]) uintptr {
index := item.keyHash >> s.keyShifts
ptr := (*unsafe.Pointer)(unsafe.Pointer(uintptr(s.array) + index*intSizeBytes))
for { // loop until the smallest key hash is in the index
element := (*ListElement[Key, Value])(atomic.LoadPointer(ptr)) // get the current item in the index
if element == nil { // no item yet at this index
if atomic.CompareAndSwapPointer(ptr, nil, unsafe.Pointer(item)) {
return s.count.Add(1)
}
continue // a new item was inserted concurrently, retry
}
if item.keyHash < element.keyHash {
// the new item is the smallest for this index?
if !atomic.CompareAndSwapPointer(ptr, unsafe.Pointer(element), unsafe.Pointer(item)) {
continue // a new item was inserted concurrently, retry
}
}
return 0
}
}

32
vendor/github.com/cornelk/hashmap/util.go generated vendored Normal file
View File

@ -0,0 +1,32 @@
package hashmap
import (
"strconv"
)
const (
// intSizeBytes is the size in byte of an int or uint value.
intSizeBytes = strconv.IntSize >> 3
)
// roundUpPower2 rounds a number to the next power of 2.
func roundUpPower2(i uintptr) uintptr {
i--
i |= i >> 1
i |= i >> 2
i |= i >> 4
i |= i >> 8
i |= i >> 16
i |= i >> 32
i++
return i
}
// log2 computes the binary logarithm of x, rounded up to the next integer.
func log2(i uintptr) uintptr {
var n, p uintptr
for p = 1; p < i; p += p {
n++
}
return n
}

258
vendor/github.com/cornelk/hashmap/util_hash.go generated vendored Normal file
View File

@ -0,0 +1,258 @@
package hashmap
import (
"encoding/binary"
"fmt"
"math/bits"
"reflect"
"unsafe"
)
const (
prime1 uint64 = 11400714785074694791
prime2 uint64 = 14029467366897019727
prime3 uint64 = 1609587929392839161
prime4 uint64 = 9650029242287828579
prime5 uint64 = 2870177450012600261
)
var prime1v = prime1
/*
Copyright (c) 2016 Caleb Spare
MIT License
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
// setDefaultHasher sets the default hasher depending on the key type.
// Inlines hashing as anonymous functions for performance improvements, other options like
// returning an anonymous functions from another function turned out to not be as performant.
func (m *Map[Key, Value]) setDefaultHasher() {
var key Key
kind := reflect.ValueOf(&key).Elem().Type().Kind()
switch kind {
case reflect.Int, reflect.Uint, reflect.Uintptr:
switch intSizeBytes {
case 2:
m.hasher = *(*func(Key) uintptr)(unsafe.Pointer(&xxHashWord))
case 4:
m.hasher = *(*func(Key) uintptr)(unsafe.Pointer(&xxHashDword))
case 8:
m.hasher = *(*func(Key) uintptr)(unsafe.Pointer(&xxHashQword))
default:
panic(fmt.Errorf("unsupported integer byte size %d", intSizeBytes))
}
case reflect.Int8, reflect.Uint8:
m.hasher = *(*func(Key) uintptr)(unsafe.Pointer(&xxHashByte))
case reflect.Int16, reflect.Uint16:
m.hasher = *(*func(Key) uintptr)(unsafe.Pointer(&xxHashWord))
case reflect.Int32, reflect.Uint32:
m.hasher = *(*func(Key) uintptr)(unsafe.Pointer(&xxHashDword))
case reflect.Int64, reflect.Uint64:
m.hasher = *(*func(Key) uintptr)(unsafe.Pointer(&xxHashQword))
case reflect.Float32:
m.hasher = *(*func(Key) uintptr)(unsafe.Pointer(&xxHashFloat32))
case reflect.Float64:
m.hasher = *(*func(Key) uintptr)(unsafe.Pointer(&xxHashFloat64))
case reflect.String:
m.hasher = *(*func(Key) uintptr)(unsafe.Pointer(&xxHashString))
default:
panic(fmt.Errorf("unsupported key type %T of kind %v", key, kind))
}
}
// Specialized xxhash hash functions, optimized for the bit size of the key where available,
// for all supported types beside string.
var xxHashByte = func(key uint8) uintptr {
h := prime5 + 1
h ^= uint64(key) * prime5
h = bits.RotateLeft64(h, 11) * prime1
h ^= h >> 33
h *= prime2
h ^= h >> 29
h *= prime3
h ^= h >> 32
return uintptr(h)
}
var xxHashWord = func(key uint16) uintptr {
h := prime5 + 2
h ^= (uint64(key) & 0xff) * prime5
h = bits.RotateLeft64(h, 11) * prime1
h ^= ((uint64(key) >> 8) & 0xff) * prime5
h = bits.RotateLeft64(h, 11) * prime1
h ^= h >> 33
h *= prime2
h ^= h >> 29
h *= prime3
h ^= h >> 32
return uintptr(h)
}
var xxHashDword = func(key uint32) uintptr {
h := prime5 + 4
h ^= uint64(key) * prime1
h = bits.RotateLeft64(h, 23)*prime2 + prime3
h ^= h >> 33
h *= prime2
h ^= h >> 29
h *= prime3
h ^= h >> 32
return uintptr(h)
}
var xxHashFloat32 = func(key float32) uintptr {
h := prime5 + 4
h ^= uint64(key) * prime1
h = bits.RotateLeft64(h, 23)*prime2 + prime3
h ^= h >> 33
h *= prime2
h ^= h >> 29
h *= prime3
h ^= h >> 32
return uintptr(h)
}
var xxHashFloat64 = func(key float64) uintptr {
h := prime5 + 4
h ^= uint64(key) * prime1
h = bits.RotateLeft64(h, 23)*prime2 + prime3
h ^= h >> 33
h *= prime2
h ^= h >> 29
h *= prime3
h ^= h >> 32
return uintptr(h)
}
var xxHashQword = func(key uint64) uintptr {
k1 := key * prime2
k1 = bits.RotateLeft64(k1, 31)
k1 *= prime1
h := (prime5 + 8) ^ k1
h = bits.RotateLeft64(h, 27)*prime1 + prime4
h ^= h >> 33
h *= prime2
h ^= h >> 29
h *= prime3
h ^= h >> 32
return uintptr(h)
}
var xxHashString = func(key string) uintptr {
sh := (*reflect.StringHeader)(unsafe.Pointer(&key))
bh := reflect.SliceHeader{
Data: sh.Data,
Len: sh.Len,
Cap: sh.Len, // cap needs to be set, otherwise xxhash fails on ARM Macs
}
b := *(*[]byte)(unsafe.Pointer(&bh))
var h uint64
if sh.Len >= 32 {
v1 := prime1v + prime2
v2 := prime2
v3 := uint64(0)
v4 := -prime1v
for len(b) >= 32 {
v1 = round(v1, binary.LittleEndian.Uint64(b[0:8:len(b)]))
v2 = round(v2, binary.LittleEndian.Uint64(b[8:16:len(b)]))
v3 = round(v3, binary.LittleEndian.Uint64(b[16:24:len(b)]))
v4 = round(v4, binary.LittleEndian.Uint64(b[24:32:len(b)]))
b = b[32:len(b):len(b)]
}
h = rol1(v1) + rol7(v2) + rol12(v3) + rol18(v4)
h = mergeRound(h, v1)
h = mergeRound(h, v2)
h = mergeRound(h, v3)
h = mergeRound(h, v4)
} else {
h = prime5
}
h += uint64(sh.Len)
i, end := 0, len(b)
for ; i+8 <= end; i += 8 {
k1 := round(0, binary.LittleEndian.Uint64(b[i:i+8:len(b)]))
h ^= k1
h = rol27(h)*prime1 + prime4
}
if i+4 <= end {
h ^= uint64(binary.LittleEndian.Uint32(b[i:i+4:len(b)])) * prime1
h = rol23(h)*prime2 + prime3
i += 4
}
for ; i < end; i++ {
h ^= uint64(b[i]) * prime5
h = rol11(h) * prime1
}
h ^= h >> 33
h *= prime2
h ^= h >> 29
h *= prime3
h ^= h >> 32
return uintptr(h)
}
func round(acc, input uint64) uint64 {
acc += input * prime2
acc = rol31(acc)
acc *= prime1
return acc
}
func mergeRound(acc, val uint64) uint64 {
val = round(0, val)
acc ^= val
acc = acc*prime1 + prime4
return acc
}
func rol1(x uint64) uint64 { return bits.RotateLeft64(x, 1) }
func rol7(x uint64) uint64 { return bits.RotateLeft64(x, 7) }
func rol11(x uint64) uint64 { return bits.RotateLeft64(x, 11) }
func rol12(x uint64) uint64 { return bits.RotateLeft64(x, 12) }
func rol18(x uint64) uint64 { return bits.RotateLeft64(x, 18) }
func rol23(x uint64) uint64 { return bits.RotateLeft64(x, 23) }
func rol27(x uint64) uint64 { return bits.RotateLeft64(x, 27) }
func rol31(x uint64) uint64 { return bits.RotateLeft64(x, 31) }

View File

@ -1,107 +0,0 @@
The Snappy compression format in the Go programming language.
To download and install from source:
$ go get github.com/golang/snappy
Unless otherwise noted, the Snappy-Go source files are distributed
under the BSD-style license found in the LICENSE file.
Benchmarks.
The golang/snappy benchmarks include compressing (Z) and decompressing (U) ten
or so files, the same set used by the C++ Snappy code (github.com/google/snappy
and note the "google", not "golang"). On an "Intel(R) Core(TM) i7-3770 CPU @
3.40GHz", Go's GOARCH=amd64 numbers as of 2016-05-29:
"go test -test.bench=."
_UFlat0-8 2.19GB/s ± 0% html
_UFlat1-8 1.41GB/s ± 0% urls
_UFlat2-8 23.5GB/s ± 2% jpg
_UFlat3-8 1.91GB/s ± 0% jpg_200
_UFlat4-8 14.0GB/s ± 1% pdf
_UFlat5-8 1.97GB/s ± 0% html4
_UFlat6-8 814MB/s ± 0% txt1
_UFlat7-8 785MB/s ± 0% txt2
_UFlat8-8 857MB/s ± 0% txt3
_UFlat9-8 719MB/s ± 1% txt4
_UFlat10-8 2.84GB/s ± 0% pb
_UFlat11-8 1.05GB/s ± 0% gaviota
_ZFlat0-8 1.04GB/s ± 0% html
_ZFlat1-8 534MB/s ± 0% urls
_ZFlat2-8 15.7GB/s ± 1% jpg
_ZFlat3-8 740MB/s ± 3% jpg_200
_ZFlat4-8 9.20GB/s ± 1% pdf
_ZFlat5-8 991MB/s ± 0% html4
_ZFlat6-8 379MB/s ± 0% txt1
_ZFlat7-8 352MB/s ± 0% txt2
_ZFlat8-8 396MB/s ± 1% txt3
_ZFlat9-8 327MB/s ± 1% txt4
_ZFlat10-8 1.33GB/s ± 1% pb
_ZFlat11-8 605MB/s ± 1% gaviota
"go test -test.bench=. -tags=noasm"
_UFlat0-8 621MB/s ± 2% html
_UFlat1-8 494MB/s ± 1% urls
_UFlat2-8 23.2GB/s ± 1% jpg
_UFlat3-8 1.12GB/s ± 1% jpg_200
_UFlat4-8 4.35GB/s ± 1% pdf
_UFlat5-8 609MB/s ± 0% html4
_UFlat6-8 296MB/s ± 0% txt1
_UFlat7-8 288MB/s ± 0% txt2
_UFlat8-8 309MB/s ± 1% txt3
_UFlat9-8 280MB/s ± 1% txt4
_UFlat10-8 753MB/s ± 0% pb
_UFlat11-8 400MB/s ± 0% gaviota
_ZFlat0-8 409MB/s ± 1% html
_ZFlat1-8 250MB/s ± 1% urls
_ZFlat2-8 12.3GB/s ± 1% jpg
_ZFlat3-8 132MB/s ± 0% jpg_200
_ZFlat4-8 2.92GB/s ± 0% pdf
_ZFlat5-8 405MB/s ± 1% html4
_ZFlat6-8 179MB/s ± 1% txt1
_ZFlat7-8 170MB/s ± 1% txt2
_ZFlat8-8 189MB/s ± 1% txt3
_ZFlat9-8 164MB/s ± 1% txt4
_ZFlat10-8 479MB/s ± 1% pb
_ZFlat11-8 270MB/s ± 1% gaviota
For comparison (Go's encoded output is byte-for-byte identical to C++'s), here
are the numbers from C++ Snappy's
make CXXFLAGS="-O2 -DNDEBUG -g" clean snappy_unittest.log && cat snappy_unittest.log
BM_UFlat/0 2.4GB/s html
BM_UFlat/1 1.4GB/s urls
BM_UFlat/2 21.8GB/s jpg
BM_UFlat/3 1.5GB/s jpg_200
BM_UFlat/4 13.3GB/s pdf
BM_UFlat/5 2.1GB/s html4
BM_UFlat/6 1.0GB/s txt1
BM_UFlat/7 959.4MB/s txt2
BM_UFlat/8 1.0GB/s txt3
BM_UFlat/9 864.5MB/s txt4
BM_UFlat/10 2.9GB/s pb
BM_UFlat/11 1.2GB/s gaviota
BM_ZFlat/0 944.3MB/s html (22.31 %)
BM_ZFlat/1 501.6MB/s urls (47.78 %)
BM_ZFlat/2 14.3GB/s jpg (99.95 %)
BM_ZFlat/3 538.3MB/s jpg_200 (73.00 %)
BM_ZFlat/4 8.3GB/s pdf (83.30 %)
BM_ZFlat/5 903.5MB/s html4 (22.52 %)
BM_ZFlat/6 336.0MB/s txt1 (57.88 %)
BM_ZFlat/7 312.3MB/s txt2 (61.91 %)
BM_ZFlat/8 353.1MB/s txt3 (54.99 %)
BM_ZFlat/9 289.9MB/s txt4 (66.26 %)
BM_ZFlat/10 1.2GB/s pb (19.68 %)
BM_ZFlat/11 527.4MB/s gaviota (37.72 %)

View File

@ -1,264 +0,0 @@
// Copyright 2011 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package snappy
import (
"encoding/binary"
"errors"
"io"
)
var (
// ErrCorrupt reports that the input is invalid.
ErrCorrupt = errors.New("snappy: corrupt input")
// ErrTooLarge reports that the uncompressed length is too large.
ErrTooLarge = errors.New("snappy: decoded block is too large")
// ErrUnsupported reports that the input isn't supported.
ErrUnsupported = errors.New("snappy: unsupported input")
errUnsupportedLiteralLength = errors.New("snappy: unsupported literal length")
)
// DecodedLen returns the length of the decoded block.
func DecodedLen(src []byte) (int, error) {
v, _, err := decodedLen(src)
return v, err
}
// decodedLen returns the length of the decoded block and the number of bytes
// that the length header occupied.
func decodedLen(src []byte) (blockLen, headerLen int, err error) {
v, n := binary.Uvarint(src)
if n <= 0 || v > 0xffffffff {
return 0, 0, ErrCorrupt
}
const wordSize = 32 << (^uint(0) >> 32 & 1)
if wordSize == 32 && v > 0x7fffffff {
return 0, 0, ErrTooLarge
}
return int(v), n, nil
}
const (
decodeErrCodeCorrupt = 1
decodeErrCodeUnsupportedLiteralLength = 2
)
// Decode returns the decoded form of src. The returned slice may be a sub-
// slice of dst if dst was large enough to hold the entire decoded block.
// Otherwise, a newly allocated slice will be returned.
//
// The dst and src must not overlap. It is valid to pass a nil dst.
//
// Decode handles the Snappy block format, not the Snappy stream format.
func Decode(dst, src []byte) ([]byte, error) {
dLen, s, err := decodedLen(src)
if err != nil {
return nil, err
}
if dLen <= len(dst) {
dst = dst[:dLen]
} else {
dst = make([]byte, dLen)
}
switch decode(dst, src[s:]) {
case 0:
return dst, nil
case decodeErrCodeUnsupportedLiteralLength:
return nil, errUnsupportedLiteralLength
}
return nil, ErrCorrupt
}
// NewReader returns a new Reader that decompresses from r, using the framing
// format described at
// https://github.com/google/snappy/blob/master/framing_format.txt
func NewReader(r io.Reader) *Reader {
return &Reader{
r: r,
decoded: make([]byte, maxBlockSize),
buf: make([]byte, maxEncodedLenOfMaxBlockSize+checksumSize),
}
}
// Reader is an io.Reader that can read Snappy-compressed bytes.
//
// Reader handles the Snappy stream format, not the Snappy block format.
type Reader struct {
r io.Reader
err error
decoded []byte
buf []byte
// decoded[i:j] contains decoded bytes that have not yet been passed on.
i, j int
readHeader bool
}
// Reset discards any buffered data, resets all state, and switches the Snappy
// reader to read from r. This permits reusing a Reader rather than allocating
// a new one.
func (r *Reader) Reset(reader io.Reader) {
r.r = reader
r.err = nil
r.i = 0
r.j = 0
r.readHeader = false
}
func (r *Reader) readFull(p []byte, allowEOF bool) (ok bool) {
if _, r.err = io.ReadFull(r.r, p); r.err != nil {
if r.err == io.ErrUnexpectedEOF || (r.err == io.EOF && !allowEOF) {
r.err = ErrCorrupt
}
return false
}
return true
}
func (r *Reader) fill() error {
for r.i >= r.j {
if !r.readFull(r.buf[:4], true) {
return r.err
}
chunkType := r.buf[0]
if !r.readHeader {
if chunkType != chunkTypeStreamIdentifier {
r.err = ErrCorrupt
return r.err
}
r.readHeader = true
}
chunkLen := int(r.buf[1]) | int(r.buf[2])<<8 | int(r.buf[3])<<16
if chunkLen > len(r.buf) {
r.err = ErrUnsupported
return r.err
}
// The chunk types are specified at
// https://github.com/google/snappy/blob/master/framing_format.txt
switch chunkType {
case chunkTypeCompressedData:
// Section 4.2. Compressed data (chunk type 0x00).
if chunkLen < checksumSize {
r.err = ErrCorrupt
return r.err
}
buf := r.buf[:chunkLen]
if !r.readFull(buf, false) {
return r.err
}
checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24
buf = buf[checksumSize:]
n, err := DecodedLen(buf)
if err != nil {
r.err = err
return r.err
}
if n > len(r.decoded) {
r.err = ErrCorrupt
return r.err
}
if _, err := Decode(r.decoded, buf); err != nil {
r.err = err
return r.err
}
if crc(r.decoded[:n]) != checksum {
r.err = ErrCorrupt
return r.err
}
r.i, r.j = 0, n
continue
case chunkTypeUncompressedData:
// Section 4.3. Uncompressed data (chunk type 0x01).
if chunkLen < checksumSize {
r.err = ErrCorrupt
return r.err
}
buf := r.buf[:checksumSize]
if !r.readFull(buf, false) {
return r.err
}
checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24
// Read directly into r.decoded instead of via r.buf.
n := chunkLen - checksumSize
if n > len(r.decoded) {
r.err = ErrCorrupt
return r.err
}
if !r.readFull(r.decoded[:n], false) {
return r.err
}
if crc(r.decoded[:n]) != checksum {
r.err = ErrCorrupt
return r.err
}
r.i, r.j = 0, n
continue
case chunkTypeStreamIdentifier:
// Section 4.1. Stream identifier (chunk type 0xff).
if chunkLen != len(magicBody) {
r.err = ErrCorrupt
return r.err
}
if !r.readFull(r.buf[:len(magicBody)], false) {
return r.err
}
for i := 0; i < len(magicBody); i++ {
if r.buf[i] != magicBody[i] {
r.err = ErrCorrupt
return r.err
}
}
continue
}
if chunkType <= 0x7f {
// Section 4.5. Reserved unskippable chunks (chunk types 0x02-0x7f).
r.err = ErrUnsupported
return r.err
}
// Section 4.4 Padding (chunk type 0xfe).
// Section 4.6. Reserved skippable chunks (chunk types 0x80-0xfd).
if !r.readFull(r.buf[:chunkLen], false) {
return r.err
}
}
return nil
}
// Read satisfies the io.Reader interface.
func (r *Reader) Read(p []byte) (int, error) {
if r.err != nil {
return 0, r.err
}
if err := r.fill(); err != nil {
return 0, err
}
n := copy(p, r.decoded[r.i:r.j])
r.i += n
return n, nil
}
// ReadByte satisfies the io.ByteReader interface.
func (r *Reader) ReadByte() (byte, error) {
if r.err != nil {
return 0, r.err
}
if err := r.fill(); err != nil {
return 0, err
}
c := r.decoded[r.i]
r.i++
return c, nil
}

View File

@ -1,490 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
#include "textflag.h"
// The asm code generally follows the pure Go code in decode_other.go, except
// where marked with a "!!!".
// func decode(dst, src []byte) int
//
// All local variables fit into registers. The non-zero stack size is only to
// spill registers and push args when issuing a CALL. The register allocation:
// - AX scratch
// - BX scratch
// - CX length or x
// - DX offset
// - SI &src[s]
// - DI &dst[d]
// + R8 dst_base
// + R9 dst_len
// + R10 dst_base + dst_len
// + R11 src_base
// + R12 src_len
// + R13 src_base + src_len
// - R14 used by doCopy
// - R15 used by doCopy
//
// The registers R8-R13 (marked with a "+") are set at the start of the
// function, and after a CALL returns, and are not otherwise modified.
//
// The d variable is implicitly DI - R8, and len(dst)-d is R10 - DI.
// The s variable is implicitly SI - R11, and len(src)-s is R13 - SI.
TEXT ·decode(SB), NOSPLIT, $48-56
// Initialize SI, DI and R8-R13.
MOVQ dst_base+0(FP), R8
MOVQ dst_len+8(FP), R9
MOVQ R8, DI
MOVQ R8, R10
ADDQ R9, R10
MOVQ src_base+24(FP), R11
MOVQ src_len+32(FP), R12
MOVQ R11, SI
MOVQ R11, R13
ADDQ R12, R13
loop:
// for s < len(src)
CMPQ SI, R13
JEQ end
// CX = uint32(src[s])
//
// switch src[s] & 0x03
MOVBLZX (SI), CX
MOVL CX, BX
ANDL $3, BX
CMPL BX, $1
JAE tagCopy
// ----------------------------------------
// The code below handles literal tags.
// case tagLiteral:
// x := uint32(src[s] >> 2)
// switch
SHRL $2, CX
CMPL CX, $60
JAE tagLit60Plus
// case x < 60:
// s++
INCQ SI
doLit:
// This is the end of the inner "switch", when we have a literal tag.
//
// We assume that CX == x and x fits in a uint32, where x is the variable
// used in the pure Go decode_other.go code.
// length = int(x) + 1
//
// Unlike the pure Go code, we don't need to check if length <= 0 because
// CX can hold 64 bits, so the increment cannot overflow.
INCQ CX
// Prepare to check if copying length bytes will run past the end of dst or
// src.
//
// AX = len(dst) - d
// BX = len(src) - s
MOVQ R10, AX
SUBQ DI, AX
MOVQ R13, BX
SUBQ SI, BX
// !!! Try a faster technique for short (16 or fewer bytes) copies.
//
// if length > 16 || len(dst)-d < 16 || len(src)-s < 16 {
// goto callMemmove // Fall back on calling runtime·memmove.
// }
//
// The C++ snappy code calls this TryFastAppend. It also checks len(src)-s
// against 21 instead of 16, because it cannot assume that all of its input
// is contiguous in memory and so it needs to leave enough source bytes to
// read the next tag without refilling buffers, but Go's Decode assumes
// contiguousness (the src argument is a []byte).
CMPQ CX, $16
JGT callMemmove
CMPQ AX, $16
JLT callMemmove
CMPQ BX, $16
JLT callMemmove
// !!! Implement the copy from src to dst as a 16-byte load and store.
// (Decode's documentation says that dst and src must not overlap.)
//
// This always copies 16 bytes, instead of only length bytes, but that's
// OK. If the input is a valid Snappy encoding then subsequent iterations
// will fix up the overrun. Otherwise, Decode returns a nil []byte (and a
// non-nil error), so the overrun will be ignored.
//
// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
// 16-byte loads and stores. This technique probably wouldn't be as
// effective on architectures that are fussier about alignment.
MOVOU 0(SI), X0
MOVOU X0, 0(DI)
// d += length
// s += length
ADDQ CX, DI
ADDQ CX, SI
JMP loop
callMemmove:
// if length > len(dst)-d || length > len(src)-s { etc }
CMPQ CX, AX
JGT errCorrupt
CMPQ CX, BX
JGT errCorrupt
// copy(dst[d:], src[s:s+length])
//
// This means calling runtime·memmove(&dst[d], &src[s], length), so we push
// DI, SI and CX as arguments. Coincidentally, we also need to spill those
// three registers to the stack, to save local variables across the CALL.
MOVQ DI, 0(SP)
MOVQ SI, 8(SP)
MOVQ CX, 16(SP)
MOVQ DI, 24(SP)
MOVQ SI, 32(SP)
MOVQ CX, 40(SP)
CALL runtime·memmove(SB)
// Restore local variables: unspill registers from the stack and
// re-calculate R8-R13.
MOVQ 24(SP), DI
MOVQ 32(SP), SI
MOVQ 40(SP), CX
MOVQ dst_base+0(FP), R8
MOVQ dst_len+8(FP), R9
MOVQ R8, R10
ADDQ R9, R10
MOVQ src_base+24(FP), R11
MOVQ src_len+32(FP), R12
MOVQ R11, R13
ADDQ R12, R13
// d += length
// s += length
ADDQ CX, DI
ADDQ CX, SI
JMP loop
tagLit60Plus:
// !!! This fragment does the
//
// s += x - 58; if uint(s) > uint(len(src)) { etc }
//
// checks. In the asm version, we code it once instead of once per switch case.
ADDQ CX, SI
SUBQ $58, SI
MOVQ SI, BX
SUBQ R11, BX
CMPQ BX, R12
JA errCorrupt
// case x == 60:
CMPL CX, $61
JEQ tagLit61
JA tagLit62Plus
// x = uint32(src[s-1])
MOVBLZX -1(SI), CX
JMP doLit
tagLit61:
// case x == 61:
// x = uint32(src[s-2]) | uint32(src[s-1])<<8
MOVWLZX -2(SI), CX
JMP doLit
tagLit62Plus:
CMPL CX, $62
JA tagLit63
// case x == 62:
// x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
MOVWLZX -3(SI), CX
MOVBLZX -1(SI), BX
SHLL $16, BX
ORL BX, CX
JMP doLit
tagLit63:
// case x == 63:
// x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
MOVL -4(SI), CX
JMP doLit
// The code above handles literal tags.
// ----------------------------------------
// The code below handles copy tags.
tagCopy4:
// case tagCopy4:
// s += 5
ADDQ $5, SI
// if uint(s) > uint(len(src)) { etc }
MOVQ SI, BX
SUBQ R11, BX
CMPQ BX, R12
JA errCorrupt
// length = 1 + int(src[s-5])>>2
SHRQ $2, CX
INCQ CX
// offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
MOVLQZX -4(SI), DX
JMP doCopy
tagCopy2:
// case tagCopy2:
// s += 3
ADDQ $3, SI
// if uint(s) > uint(len(src)) { etc }
MOVQ SI, BX
SUBQ R11, BX
CMPQ BX, R12
JA errCorrupt
// length = 1 + int(src[s-3])>>2
SHRQ $2, CX
INCQ CX
// offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
MOVWQZX -2(SI), DX
JMP doCopy
tagCopy:
// We have a copy tag. We assume that:
// - BX == src[s] & 0x03
// - CX == src[s]
CMPQ BX, $2
JEQ tagCopy2
JA tagCopy4
// case tagCopy1:
// s += 2
ADDQ $2, SI
// if uint(s) > uint(len(src)) { etc }
MOVQ SI, BX
SUBQ R11, BX
CMPQ BX, R12
JA errCorrupt
// offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
MOVQ CX, DX
ANDQ $0xe0, DX
SHLQ $3, DX
MOVBQZX -1(SI), BX
ORQ BX, DX
// length = 4 + int(src[s-2])>>2&0x7
SHRQ $2, CX
ANDQ $7, CX
ADDQ $4, CX
doCopy:
// This is the end of the outer "switch", when we have a copy tag.
//
// We assume that:
// - CX == length && CX > 0
// - DX == offset
// if offset <= 0 { etc }
CMPQ DX, $0
JLE errCorrupt
// if d < offset { etc }
MOVQ DI, BX
SUBQ R8, BX
CMPQ BX, DX
JLT errCorrupt
// if length > len(dst)-d { etc }
MOVQ R10, BX
SUBQ DI, BX
CMPQ CX, BX
JGT errCorrupt
// forwardCopy(dst[d:d+length], dst[d-offset:]); d += length
//
// Set:
// - R14 = len(dst)-d
// - R15 = &dst[d-offset]
MOVQ R10, R14
SUBQ DI, R14
MOVQ DI, R15
SUBQ DX, R15
// !!! Try a faster technique for short (16 or fewer bytes) forward copies.
//
// First, try using two 8-byte load/stores, similar to the doLit technique
// above. Even if dst[d:d+length] and dst[d-offset:] can overlap, this is
// still OK if offset >= 8. Note that this has to be two 8-byte load/stores
// and not one 16-byte load/store, and the first store has to be before the
// second load, due to the overlap if offset is in the range [8, 16).
//
// if length > 16 || offset < 8 || len(dst)-d < 16 {
// goto slowForwardCopy
// }
// copy 16 bytes
// d += length
CMPQ CX, $16
JGT slowForwardCopy
CMPQ DX, $8
JLT slowForwardCopy
CMPQ R14, $16
JLT slowForwardCopy
MOVQ 0(R15), AX
MOVQ AX, 0(DI)
MOVQ 8(R15), BX
MOVQ BX, 8(DI)
ADDQ CX, DI
JMP loop
slowForwardCopy:
// !!! If the forward copy is longer than 16 bytes, or if offset < 8, we
// can still try 8-byte load stores, provided we can overrun up to 10 extra
// bytes. As above, the overrun will be fixed up by subsequent iterations
// of the outermost loop.
//
// The C++ snappy code calls this technique IncrementalCopyFastPath. Its
// commentary says:
//
// ----
//
// The main part of this loop is a simple copy of eight bytes at a time
// until we've copied (at least) the requested amount of bytes. However,
// if d and d-offset are less than eight bytes apart (indicating a
// repeating pattern of length < 8), we first need to expand the pattern in
// order to get the correct results. For instance, if the buffer looks like
// this, with the eight-byte <d-offset> and <d> patterns marked as
// intervals:
//
// abxxxxxxxxxxxx
// [------] d-offset
// [------] d
//
// a single eight-byte copy from <d-offset> to <d> will repeat the pattern
// once, after which we can move <d> two bytes without moving <d-offset>:
//
// ababxxxxxxxxxx
// [------] d-offset
// [------] d
//
// and repeat the exercise until the two no longer overlap.
//
// This allows us to do very well in the special case of one single byte
// repeated many times, without taking a big hit for more general cases.
//
// The worst case of extra writing past the end of the match occurs when
// offset == 1 and length == 1; the last copy will read from byte positions
// [0..7] and write to [4..11], whereas it was only supposed to write to
// position 1. Thus, ten excess bytes.
//
// ----
//
// That "10 byte overrun" worst case is confirmed by Go's
// TestSlowForwardCopyOverrun, which also tests the fixUpSlowForwardCopy
// and finishSlowForwardCopy algorithm.
//
// if length > len(dst)-d-10 {
// goto verySlowForwardCopy
// }
SUBQ $10, R14
CMPQ CX, R14
JGT verySlowForwardCopy
makeOffsetAtLeast8:
// !!! As above, expand the pattern so that offset >= 8 and we can use
// 8-byte load/stores.
//
// for offset < 8 {
// copy 8 bytes from dst[d-offset:] to dst[d:]
// length -= offset
// d += offset
// offset += offset
// // The two previous lines together means that d-offset, and therefore
// // R15, is unchanged.
// }
CMPQ DX, $8
JGE fixUpSlowForwardCopy
MOVQ (R15), BX
MOVQ BX, (DI)
SUBQ DX, CX
ADDQ DX, DI
ADDQ DX, DX
JMP makeOffsetAtLeast8
fixUpSlowForwardCopy:
// !!! Add length (which might be negative now) to d (implied by DI being
// &dst[d]) so that d ends up at the right place when we jump back to the
// top of the loop. Before we do that, though, we save DI to AX so that, if
// length is positive, copying the remaining length bytes will write to the
// right place.
MOVQ DI, AX
ADDQ CX, DI
finishSlowForwardCopy:
// !!! Repeat 8-byte load/stores until length <= 0. Ending with a negative
// length means that we overrun, but as above, that will be fixed up by
// subsequent iterations of the outermost loop.
CMPQ CX, $0
JLE loop
MOVQ (R15), BX
MOVQ BX, (AX)
ADDQ $8, R15
ADDQ $8, AX
SUBQ $8, CX
JMP finishSlowForwardCopy
verySlowForwardCopy:
// verySlowForwardCopy is a simple implementation of forward copy. In C
// parlance, this is a do/while loop instead of a while loop, since we know
// that length > 0. In Go syntax:
//
// for {
// dst[d] = dst[d - offset]
// d++
// length--
// if length == 0 {
// break
// }
// }
MOVB (R15), BX
MOVB BX, (DI)
INCQ R15
INCQ DI
DECQ CX
JNZ verySlowForwardCopy
JMP loop
// The code above handles copy tags.
// ----------------------------------------
end:
// This is the end of the "for s < len(src)".
//
// if d != len(dst) { etc }
CMPQ DI, R10
JNE errCorrupt
// return 0
MOVQ $0, ret+48(FP)
RET
errCorrupt:
// return decodeErrCodeCorrupt
MOVQ $1, ret+48(FP)
RET

View File

@ -1,494 +0,0 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
#include "textflag.h"
// The asm code generally follows the pure Go code in decode_other.go, except
// where marked with a "!!!".
// func decode(dst, src []byte) int
//
// All local variables fit into registers. The non-zero stack size is only to
// spill registers and push args when issuing a CALL. The register allocation:
// - R2 scratch
// - R3 scratch
// - R4 length or x
// - R5 offset
// - R6 &src[s]
// - R7 &dst[d]
// + R8 dst_base
// + R9 dst_len
// + R10 dst_base + dst_len
// + R11 src_base
// + R12 src_len
// + R13 src_base + src_len
// - R14 used by doCopy
// - R15 used by doCopy
//
// The registers R8-R13 (marked with a "+") are set at the start of the
// function, and after a CALL returns, and are not otherwise modified.
//
// The d variable is implicitly R7 - R8, and len(dst)-d is R10 - R7.
// The s variable is implicitly R6 - R11, and len(src)-s is R13 - R6.
TEXT ·decode(SB), NOSPLIT, $56-56
// Initialize R6, R7 and R8-R13.
MOVD dst_base+0(FP), R8
MOVD dst_len+8(FP), R9
MOVD R8, R7
MOVD R8, R10
ADD R9, R10, R10
MOVD src_base+24(FP), R11
MOVD src_len+32(FP), R12
MOVD R11, R6
MOVD R11, R13
ADD R12, R13, R13
loop:
// for s < len(src)
CMP R13, R6
BEQ end
// R4 = uint32(src[s])
//
// switch src[s] & 0x03
MOVBU (R6), R4
MOVW R4, R3
ANDW $3, R3
MOVW $1, R1
CMPW R1, R3
BGE tagCopy
// ----------------------------------------
// The code below handles literal tags.
// case tagLiteral:
// x := uint32(src[s] >> 2)
// switch
MOVW $60, R1
LSRW $2, R4, R4
CMPW R4, R1
BLS tagLit60Plus
// case x < 60:
// s++
ADD $1, R6, R6
doLit:
// This is the end of the inner "switch", when we have a literal tag.
//
// We assume that R4 == x and x fits in a uint32, where x is the variable
// used in the pure Go decode_other.go code.
// length = int(x) + 1
//
// Unlike the pure Go code, we don't need to check if length <= 0 because
// R4 can hold 64 bits, so the increment cannot overflow.
ADD $1, R4, R4
// Prepare to check if copying length bytes will run past the end of dst or
// src.
//
// R2 = len(dst) - d
// R3 = len(src) - s
MOVD R10, R2
SUB R7, R2, R2
MOVD R13, R3
SUB R6, R3, R3
// !!! Try a faster technique for short (16 or fewer bytes) copies.
//
// if length > 16 || len(dst)-d < 16 || len(src)-s < 16 {
// goto callMemmove // Fall back on calling runtime·memmove.
// }
//
// The C++ snappy code calls this TryFastAppend. It also checks len(src)-s
// against 21 instead of 16, because it cannot assume that all of its input
// is contiguous in memory and so it needs to leave enough source bytes to
// read the next tag without refilling buffers, but Go's Decode assumes
// contiguousness (the src argument is a []byte).
CMP $16, R4
BGT callMemmove
CMP $16, R2
BLT callMemmove
CMP $16, R3
BLT callMemmove
// !!! Implement the copy from src to dst as a 16-byte load and store.
// (Decode's documentation says that dst and src must not overlap.)
//
// This always copies 16 bytes, instead of only length bytes, but that's
// OK. If the input is a valid Snappy encoding then subsequent iterations
// will fix up the overrun. Otherwise, Decode returns a nil []byte (and a
// non-nil error), so the overrun will be ignored.
//
// Note that on arm64, it is legal and cheap to issue unaligned 8-byte or
// 16-byte loads and stores. This technique probably wouldn't be as
// effective on architectures that are fussier about alignment.
LDP 0(R6), (R14, R15)
STP (R14, R15), 0(R7)
// d += length
// s += length
ADD R4, R7, R7
ADD R4, R6, R6
B loop
callMemmove:
// if length > len(dst)-d || length > len(src)-s { etc }
CMP R2, R4
BGT errCorrupt
CMP R3, R4
BGT errCorrupt
// copy(dst[d:], src[s:s+length])
//
// This means calling runtime·memmove(&dst[d], &src[s], length), so we push
// R7, R6 and R4 as arguments. Coincidentally, we also need to spill those
// three registers to the stack, to save local variables across the CALL.
MOVD R7, 8(RSP)
MOVD R6, 16(RSP)
MOVD R4, 24(RSP)
MOVD R7, 32(RSP)
MOVD R6, 40(RSP)
MOVD R4, 48(RSP)
CALL runtime·memmove(SB)
// Restore local variables: unspill registers from the stack and
// re-calculate R8-R13.
MOVD 32(RSP), R7
MOVD 40(RSP), R6
MOVD 48(RSP), R4
MOVD dst_base+0(FP), R8
MOVD dst_len+8(FP), R9
MOVD R8, R10
ADD R9, R10, R10
MOVD src_base+24(FP), R11
MOVD src_len+32(FP), R12
MOVD R11, R13
ADD R12, R13, R13
// d += length
// s += length
ADD R4, R7, R7
ADD R4, R6, R6
B loop
tagLit60Plus:
// !!! This fragment does the
//
// s += x - 58; if uint(s) > uint(len(src)) { etc }
//
// checks. In the asm version, we code it once instead of once per switch case.
ADD R4, R6, R6
SUB $58, R6, R6
MOVD R6, R3
SUB R11, R3, R3
CMP R12, R3
BGT errCorrupt
// case x == 60:
MOVW $61, R1
CMPW R1, R4
BEQ tagLit61
BGT tagLit62Plus
// x = uint32(src[s-1])
MOVBU -1(R6), R4
B doLit
tagLit61:
// case x == 61:
// x = uint32(src[s-2]) | uint32(src[s-1])<<8
MOVHU -2(R6), R4
B doLit
tagLit62Plus:
CMPW $62, R4
BHI tagLit63
// case x == 62:
// x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
MOVHU -3(R6), R4
MOVBU -1(R6), R3
ORR R3<<16, R4
B doLit
tagLit63:
// case x == 63:
// x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
MOVWU -4(R6), R4
B doLit
// The code above handles literal tags.
// ----------------------------------------
// The code below handles copy tags.
tagCopy4:
// case tagCopy4:
// s += 5
ADD $5, R6, R6
// if uint(s) > uint(len(src)) { etc }
MOVD R6, R3
SUB R11, R3, R3
CMP R12, R3
BGT errCorrupt
// length = 1 + int(src[s-5])>>2
MOVD $1, R1
ADD R4>>2, R1, R4
// offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
MOVWU -4(R6), R5
B doCopy
tagCopy2:
// case tagCopy2:
// s += 3
ADD $3, R6, R6
// if uint(s) > uint(len(src)) { etc }
MOVD R6, R3
SUB R11, R3, R3
CMP R12, R3
BGT errCorrupt
// length = 1 + int(src[s-3])>>2
MOVD $1, R1
ADD R4>>2, R1, R4
// offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
MOVHU -2(R6), R5
B doCopy
tagCopy:
// We have a copy tag. We assume that:
// - R3 == src[s] & 0x03
// - R4 == src[s]
CMP $2, R3
BEQ tagCopy2
BGT tagCopy4
// case tagCopy1:
// s += 2
ADD $2, R6, R6
// if uint(s) > uint(len(src)) { etc }
MOVD R6, R3
SUB R11, R3, R3
CMP R12, R3
BGT errCorrupt
// offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
MOVD R4, R5
AND $0xe0, R5
MOVBU -1(R6), R3
ORR R5<<3, R3, R5
// length = 4 + int(src[s-2])>>2&0x7
MOVD $7, R1
AND R4>>2, R1, R4
ADD $4, R4, R4
doCopy:
// This is the end of the outer "switch", when we have a copy tag.
//
// We assume that:
// - R4 == length && R4 > 0
// - R5 == offset
// if offset <= 0 { etc }
MOVD $0, R1
CMP R1, R5
BLE errCorrupt
// if d < offset { etc }
MOVD R7, R3
SUB R8, R3, R3
CMP R5, R3
BLT errCorrupt
// if length > len(dst)-d { etc }
MOVD R10, R3
SUB R7, R3, R3
CMP R3, R4
BGT errCorrupt
// forwardCopy(dst[d:d+length], dst[d-offset:]); d += length
//
// Set:
// - R14 = len(dst)-d
// - R15 = &dst[d-offset]
MOVD R10, R14
SUB R7, R14, R14
MOVD R7, R15
SUB R5, R15, R15
// !!! Try a faster technique for short (16 or fewer bytes) forward copies.
//
// First, try using two 8-byte load/stores, similar to the doLit technique
// above. Even if dst[d:d+length] and dst[d-offset:] can overlap, this is
// still OK if offset >= 8. Note that this has to be two 8-byte load/stores
// and not one 16-byte load/store, and the first store has to be before the
// second load, due to the overlap if offset is in the range [8, 16).
//
// if length > 16 || offset < 8 || len(dst)-d < 16 {
// goto slowForwardCopy
// }
// copy 16 bytes
// d += length
CMP $16, R4
BGT slowForwardCopy
CMP $8, R5
BLT slowForwardCopy
CMP $16, R14
BLT slowForwardCopy
MOVD 0(R15), R2
MOVD R2, 0(R7)
MOVD 8(R15), R3
MOVD R3, 8(R7)
ADD R4, R7, R7
B loop
slowForwardCopy:
// !!! If the forward copy is longer than 16 bytes, or if offset < 8, we
// can still try 8-byte load stores, provided we can overrun up to 10 extra
// bytes. As above, the overrun will be fixed up by subsequent iterations
// of the outermost loop.
//
// The C++ snappy code calls this technique IncrementalCopyFastPath. Its
// commentary says:
//
// ----
//
// The main part of this loop is a simple copy of eight bytes at a time
// until we've copied (at least) the requested amount of bytes. However,
// if d and d-offset are less than eight bytes apart (indicating a
// repeating pattern of length < 8), we first need to expand the pattern in
// order to get the correct results. For instance, if the buffer looks like
// this, with the eight-byte <d-offset> and <d> patterns marked as
// intervals:
//
// abxxxxxxxxxxxx
// [------] d-offset
// [------] d
//
// a single eight-byte copy from <d-offset> to <d> will repeat the pattern
// once, after which we can move <d> two bytes without moving <d-offset>:
//
// ababxxxxxxxxxx
// [------] d-offset
// [------] d
//
// and repeat the exercise until the two no longer overlap.
//
// This allows us to do very well in the special case of one single byte
// repeated many times, without taking a big hit for more general cases.
//
// The worst case of extra writing past the end of the match occurs when
// offset == 1 and length == 1; the last copy will read from byte positions
// [0..7] and write to [4..11], whereas it was only supposed to write to
// position 1. Thus, ten excess bytes.
//
// ----
//
// That "10 byte overrun" worst case is confirmed by Go's
// TestSlowForwardCopyOverrun, which also tests the fixUpSlowForwardCopy
// and finishSlowForwardCopy algorithm.
//
// if length > len(dst)-d-10 {
// goto verySlowForwardCopy
// }
SUB $10, R14, R14
CMP R14, R4
BGT verySlowForwardCopy
makeOffsetAtLeast8:
// !!! As above, expand the pattern so that offset >= 8 and we can use
// 8-byte load/stores.
//
// for offset < 8 {
// copy 8 bytes from dst[d-offset:] to dst[d:]
// length -= offset
// d += offset
// offset += offset
// // The two previous lines together means that d-offset, and therefore
// // R15, is unchanged.
// }
CMP $8, R5
BGE fixUpSlowForwardCopy
MOVD (R15), R3
MOVD R3, (R7)
SUB R5, R4, R4
ADD R5, R7, R7
ADD R5, R5, R5
B makeOffsetAtLeast8
fixUpSlowForwardCopy:
// !!! Add length (which might be negative now) to d (implied by R7 being
// &dst[d]) so that d ends up at the right place when we jump back to the
// top of the loop. Before we do that, though, we save R7 to R2 so that, if
// length is positive, copying the remaining length bytes will write to the
// right place.
MOVD R7, R2
ADD R4, R7, R7
finishSlowForwardCopy:
// !!! Repeat 8-byte load/stores until length <= 0. Ending with a negative
// length means that we overrun, but as above, that will be fixed up by
// subsequent iterations of the outermost loop.
MOVD $0, R1
CMP R1, R4
BLE loop
MOVD (R15), R3
MOVD R3, (R2)
ADD $8, R15, R15
ADD $8, R2, R2
SUB $8, R4, R4
B finishSlowForwardCopy
verySlowForwardCopy:
// verySlowForwardCopy is a simple implementation of forward copy. In C
// parlance, this is a do/while loop instead of a while loop, since we know
// that length > 0. In Go syntax:
//
// for {
// dst[d] = dst[d - offset]
// d++
// length--
// if length == 0 {
// break
// }
// }
MOVB (R15), R3
MOVB R3, (R7)
ADD $1, R15, R15
ADD $1, R7, R7
SUB $1, R4, R4
CBNZ R4, verySlowForwardCopy
B loop
// The code above handles copy tags.
// ----------------------------------------
end:
// This is the end of the "for s < len(src)".
//
// if d != len(dst) { etc }
CMP R10, R7
BNE errCorrupt
// return 0
MOVD $0, ret+48(FP)
RET
errCorrupt:
// return decodeErrCodeCorrupt
MOVD $1, R2
MOVD R2, ret+48(FP)
RET

View File

@ -1,15 +0,0 @@
// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
// +build amd64 arm64
package snappy
// decode has the same semantics as in decode_other.go.
//
//go:noescape
func decode(dst, src []byte) int

View File

@ -1,115 +0,0 @@
// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64,!arm64 appengine !gc noasm
package snappy
// decode writes the decoding of src to dst. It assumes that the varint-encoded
// length of the decompressed bytes has already been read, and that len(dst)
// equals that length.
//
// It returns 0 on success or a decodeErrCodeXxx error code on failure.
func decode(dst, src []byte) int {
var d, s, offset, length int
for s < len(src) {
switch src[s] & 0x03 {
case tagLiteral:
x := uint32(src[s] >> 2)
switch {
case x < 60:
s++
case x == 60:
s += 2
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
x = uint32(src[s-1])
case x == 61:
s += 3
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
x = uint32(src[s-2]) | uint32(src[s-1])<<8
case x == 62:
s += 4
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
case x == 63:
s += 5
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
}
length = int(x) + 1
if length <= 0 {
return decodeErrCodeUnsupportedLiteralLength
}
if length > len(dst)-d || length > len(src)-s {
return decodeErrCodeCorrupt
}
copy(dst[d:], src[s:s+length])
d += length
s += length
continue
case tagCopy1:
s += 2
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
length = 4 + int(src[s-2])>>2&0x7
offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
case tagCopy2:
s += 3
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
length = 1 + int(src[s-3])>>2
offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
case tagCopy4:
s += 5
if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line.
return decodeErrCodeCorrupt
}
length = 1 + int(src[s-5])>>2
offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
}
if offset <= 0 || d < offset || length > len(dst)-d {
return decodeErrCodeCorrupt
}
// Copy from an earlier sub-slice of dst to a later sub-slice.
// If no overlap, use the built-in copy:
if offset >= length {
copy(dst[d:d+length], dst[d-offset:])
d += length
continue
}
// Unlike the built-in copy function, this byte-by-byte copy always runs
// forwards, even if the slices overlap. Conceptually, this is:
//
// d += forwardCopy(dst[d:d+length], dst[d-offset:])
//
// We align the slices into a and b and show the compiler they are the same size.
// This allows the loop to run without bounds checks.
a := dst[d : d+length]
b := dst[d-offset:]
b = b[:len(a)]
for i := range a {
a[i] = b[i]
}
d += length
}
if d != len(dst) {
return decodeErrCodeCorrupt
}
return 0
}

View File

@ -1,289 +0,0 @@
// Copyright 2011 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package snappy
import (
"encoding/binary"
"errors"
"io"
)
// Encode returns the encoded form of src. The returned slice may be a sub-
// slice of dst if dst was large enough to hold the entire encoded block.
// Otherwise, a newly allocated slice will be returned.
//
// The dst and src must not overlap. It is valid to pass a nil dst.
//
// Encode handles the Snappy block format, not the Snappy stream format.
func Encode(dst, src []byte) []byte {
if n := MaxEncodedLen(len(src)); n < 0 {
panic(ErrTooLarge)
} else if len(dst) < n {
dst = make([]byte, n)
}
// The block starts with the varint-encoded length of the decompressed bytes.
d := binary.PutUvarint(dst, uint64(len(src)))
for len(src) > 0 {
p := src
src = nil
if len(p) > maxBlockSize {
p, src = p[:maxBlockSize], p[maxBlockSize:]
}
if len(p) < minNonLiteralBlockSize {
d += emitLiteral(dst[d:], p)
} else {
d += encodeBlock(dst[d:], p)
}
}
return dst[:d]
}
// inputMargin is the minimum number of extra input bytes to keep, inside
// encodeBlock's inner loop. On some architectures, this margin lets us
// implement a fast path for emitLiteral, where the copy of short (<= 16 byte)
// literals can be implemented as a single load to and store from a 16-byte
// register. That literal's actual length can be as short as 1 byte, so this
// can copy up to 15 bytes too much, but that's OK as subsequent iterations of
// the encoding loop will fix up the copy overrun, and this inputMargin ensures
// that we don't overrun the dst and src buffers.
const inputMargin = 16 - 1
// minNonLiteralBlockSize is the minimum size of the input to encodeBlock that
// could be encoded with a copy tag. This is the minimum with respect to the
// algorithm used by encodeBlock, not a minimum enforced by the file format.
//
// The encoded output must start with at least a 1 byte literal, as there are
// no previous bytes to copy. A minimal (1 byte) copy after that, generated
// from an emitCopy call in encodeBlock's main loop, would require at least
// another inputMargin bytes, for the reason above: we want any emitLiteral
// calls inside encodeBlock's main loop to use the fast path if possible, which
// requires being able to overrun by inputMargin bytes. Thus,
// minNonLiteralBlockSize equals 1 + 1 + inputMargin.
//
// The C++ code doesn't use this exact threshold, but it could, as discussed at
// https://groups.google.com/d/topic/snappy-compression/oGbhsdIJSJ8/discussion
// The difference between Go (2+inputMargin) and C++ (inputMargin) is purely an
// optimization. It should not affect the encoded form. This is tested by
// TestSameEncodingAsCppShortCopies.
const minNonLiteralBlockSize = 1 + 1 + inputMargin
// MaxEncodedLen returns the maximum length of a snappy block, given its
// uncompressed length.
//
// It will return a negative value if srcLen is too large to encode.
func MaxEncodedLen(srcLen int) int {
n := uint64(srcLen)
if n > 0xffffffff {
return -1
}
// Compressed data can be defined as:
// compressed := item* literal*
// item := literal* copy
//
// The trailing literal sequence has a space blowup of at most 62/60
// since a literal of length 60 needs one tag byte + one extra byte
// for length information.
//
// Item blowup is trickier to measure. Suppose the "copy" op copies
// 4 bytes of data. Because of a special check in the encoding code,
// we produce a 4-byte copy only if the offset is < 65536. Therefore
// the copy op takes 3 bytes to encode, and this type of item leads
// to at most the 62/60 blowup for representing literals.
//
// Suppose the "copy" op copies 5 bytes of data. If the offset is big
// enough, it will take 5 bytes to encode the copy op. Therefore the
// worst case here is a one-byte literal followed by a five-byte copy.
// That is, 6 bytes of input turn into 7 bytes of "compressed" data.
//
// This last factor dominates the blowup, so the final estimate is:
n = 32 + n + n/6
if n > 0xffffffff {
return -1
}
return int(n)
}
var errClosed = errors.New("snappy: Writer is closed")
// NewWriter returns a new Writer that compresses to w.
//
// The Writer returned does not buffer writes. There is no need to Flush or
// Close such a Writer.
//
// Deprecated: the Writer returned is not suitable for many small writes, only
// for few large writes. Use NewBufferedWriter instead, which is efficient
// regardless of the frequency and shape of the writes, and remember to Close
// that Writer when done.
func NewWriter(w io.Writer) *Writer {
return &Writer{
w: w,
obuf: make([]byte, obufLen),
}
}
// NewBufferedWriter returns a new Writer that compresses to w, using the
// framing format described at
// https://github.com/google/snappy/blob/master/framing_format.txt
//
// The Writer returned buffers writes. Users must call Close to guarantee all
// data has been forwarded to the underlying io.Writer. They may also call
// Flush zero or more times before calling Close.
func NewBufferedWriter(w io.Writer) *Writer {
return &Writer{
w: w,
ibuf: make([]byte, 0, maxBlockSize),
obuf: make([]byte, obufLen),
}
}
// Writer is an io.Writer that can write Snappy-compressed bytes.
//
// Writer handles the Snappy stream format, not the Snappy block format.
type Writer struct {
w io.Writer
err error
// ibuf is a buffer for the incoming (uncompressed) bytes.
//
// Its use is optional. For backwards compatibility, Writers created by the
// NewWriter function have ibuf == nil, do not buffer incoming bytes, and
// therefore do not need to be Flush'ed or Close'd.
ibuf []byte
// obuf is a buffer for the outgoing (compressed) bytes.
obuf []byte
// wroteStreamHeader is whether we have written the stream header.
wroteStreamHeader bool
}
// Reset discards the writer's state and switches the Snappy writer to write to
// w. This permits reusing a Writer rather than allocating a new one.
func (w *Writer) Reset(writer io.Writer) {
w.w = writer
w.err = nil
if w.ibuf != nil {
w.ibuf = w.ibuf[:0]
}
w.wroteStreamHeader = false
}
// Write satisfies the io.Writer interface.
func (w *Writer) Write(p []byte) (nRet int, errRet error) {
if w.ibuf == nil {
// Do not buffer incoming bytes. This does not perform or compress well
// if the caller of Writer.Write writes many small slices. This
// behavior is therefore deprecated, but still supported for backwards
// compatibility with code that doesn't explicitly Flush or Close.
return w.write(p)
}
// The remainder of this method is based on bufio.Writer.Write from the
// standard library.
for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
var n int
if len(w.ibuf) == 0 {
// Large write, empty buffer.
// Write directly from p to avoid copy.
n, _ = w.write(p)
} else {
n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
w.ibuf = w.ibuf[:len(w.ibuf)+n]
w.Flush()
}
nRet += n
p = p[n:]
}
if w.err != nil {
return nRet, w.err
}
n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
w.ibuf = w.ibuf[:len(w.ibuf)+n]
nRet += n
return nRet, nil
}
func (w *Writer) write(p []byte) (nRet int, errRet error) {
if w.err != nil {
return 0, w.err
}
for len(p) > 0 {
obufStart := len(magicChunk)
if !w.wroteStreamHeader {
w.wroteStreamHeader = true
copy(w.obuf, magicChunk)
obufStart = 0
}
var uncompressed []byte
if len(p) > maxBlockSize {
uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
} else {
uncompressed, p = p, nil
}
checksum := crc(uncompressed)
// Compress the buffer, discarding the result if the improvement
// isn't at least 12.5%.
compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
chunkType := uint8(chunkTypeCompressedData)
chunkLen := 4 + len(compressed)
obufEnd := obufHeaderLen + len(compressed)
if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
chunkType = chunkTypeUncompressedData
chunkLen = 4 + len(uncompressed)
obufEnd = obufHeaderLen
}
// Fill in the per-chunk header that comes before the body.
w.obuf[len(magicChunk)+0] = chunkType
w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)
if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
w.err = err
return nRet, err
}
if chunkType == chunkTypeUncompressedData {
if _, err := w.w.Write(uncompressed); err != nil {
w.err = err
return nRet, err
}
}
nRet += len(uncompressed)
}
return nRet, nil
}
// Flush flushes the Writer to its underlying io.Writer.
func (w *Writer) Flush() error {
if w.err != nil {
return w.err
}
if len(w.ibuf) == 0 {
return nil
}
w.write(w.ibuf)
w.ibuf = w.ibuf[:0]
return w.err
}
// Close calls Flush and then closes the Writer.
func (w *Writer) Close() error {
w.Flush()
ret := w.err
if w.err == nil {
w.err = errClosed
}
return ret
}

View File

@ -1,730 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
#include "textflag.h"
// The XXX lines assemble on Go 1.4, 1.5 and 1.7, but not 1.6, due to a
// Go toolchain regression. See https://github.com/golang/go/issues/15426 and
// https://github.com/golang/snappy/issues/29
//
// As a workaround, the package was built with a known good assembler, and
// those instructions were disassembled by "objdump -d" to yield the
// 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
// style comments, in AT&T asm syntax. Note that rsp here is a physical
// register, not Go/asm's SP pseudo-register (see https://golang.org/doc/asm).
// The instructions were then encoded as "BYTE $0x.." sequences, which assemble
// fine on Go 1.6.
// The asm code generally follows the pure Go code in encode_other.go, except
// where marked with a "!!!".
// ----------------------------------------------------------------------------
// func emitLiteral(dst, lit []byte) int
//
// All local variables fit into registers. The register allocation:
// - AX len(lit)
// - BX n
// - DX return value
// - DI &dst[i]
// - R10 &lit[0]
//
// The 24 bytes of stack space is to call runtime·memmove.
//
// The unusual register allocation of local variables, such as R10 for the
// source pointer, matches the allocation used at the call site in encodeBlock,
// which makes it easier to manually inline this function.
TEXT ·emitLiteral(SB), NOSPLIT, $24-56
MOVQ dst_base+0(FP), DI
MOVQ lit_base+24(FP), R10
MOVQ lit_len+32(FP), AX
MOVQ AX, DX
MOVL AX, BX
SUBL $1, BX
CMPL BX, $60
JLT oneByte
CMPL BX, $256
JLT twoBytes
threeBytes:
MOVB $0xf4, 0(DI)
MOVW BX, 1(DI)
ADDQ $3, DI
ADDQ $3, DX
JMP memmove
twoBytes:
MOVB $0xf0, 0(DI)
MOVB BX, 1(DI)
ADDQ $2, DI
ADDQ $2, DX
JMP memmove
oneByte:
SHLB $2, BX
MOVB BX, 0(DI)
ADDQ $1, DI
ADDQ $1, DX
memmove:
MOVQ DX, ret+48(FP)
// copy(dst[i:], lit)
//
// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
// DI, R10 and AX as arguments.
MOVQ DI, 0(SP)
MOVQ R10, 8(SP)
MOVQ AX, 16(SP)
CALL runtime·memmove(SB)
RET
// ----------------------------------------------------------------------------
// func emitCopy(dst []byte, offset, length int) int
//
// All local variables fit into registers. The register allocation:
// - AX length
// - SI &dst[0]
// - DI &dst[i]
// - R11 offset
//
// The unusual register allocation of local variables, such as R11 for the
// offset, matches the allocation used at the call site in encodeBlock, which
// makes it easier to manually inline this function.
TEXT ·emitCopy(SB), NOSPLIT, $0-48
MOVQ dst_base+0(FP), DI
MOVQ DI, SI
MOVQ offset+24(FP), R11
MOVQ length+32(FP), AX
loop0:
// for length >= 68 { etc }
CMPL AX, $68
JLT step1
// Emit a length 64 copy, encoded as 3 bytes.
MOVB $0xfe, 0(DI)
MOVW R11, 1(DI)
ADDQ $3, DI
SUBL $64, AX
JMP loop0
step1:
// if length > 64 { etc }
CMPL AX, $64
JLE step2
// Emit a length 60 copy, encoded as 3 bytes.
MOVB $0xee, 0(DI)
MOVW R11, 1(DI)
ADDQ $3, DI
SUBL $60, AX
step2:
// if length >= 12 || offset >= 2048 { goto step3 }
CMPL AX, $12
JGE step3
CMPL R11, $2048
JGE step3
// Emit the remaining copy, encoded as 2 bytes.
MOVB R11, 1(DI)
SHRL $8, R11
SHLB $5, R11
SUBB $4, AX
SHLB $2, AX
ORB AX, R11
ORB $1, R11
MOVB R11, 0(DI)
ADDQ $2, DI
// Return the number of bytes written.
SUBQ SI, DI
MOVQ DI, ret+40(FP)
RET
step3:
// Emit the remaining copy, encoded as 3 bytes.
SUBL $1, AX
SHLB $2, AX
ORB $2, AX
MOVB AX, 0(DI)
MOVW R11, 1(DI)
ADDQ $3, DI
// Return the number of bytes written.
SUBQ SI, DI
MOVQ DI, ret+40(FP)
RET
// ----------------------------------------------------------------------------
// func extendMatch(src []byte, i, j int) int
//
// All local variables fit into registers. The register allocation:
// - DX &src[0]
// - SI &src[j]
// - R13 &src[len(src) - 8]
// - R14 &src[len(src)]
// - R15 &src[i]
//
// The unusual register allocation of local variables, such as R15 for a source
// pointer, matches the allocation used at the call site in encodeBlock, which
// makes it easier to manually inline this function.
TEXT ·extendMatch(SB), NOSPLIT, $0-48
MOVQ src_base+0(FP), DX
MOVQ src_len+8(FP), R14
MOVQ i+24(FP), R15
MOVQ j+32(FP), SI
ADDQ DX, R14
ADDQ DX, R15
ADDQ DX, SI
MOVQ R14, R13
SUBQ $8, R13
cmp8:
// As long as we are 8 or more bytes before the end of src, we can load and
// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
CMPQ SI, R13
JA cmp1
MOVQ (R15), AX
MOVQ (SI), BX
CMPQ AX, BX
JNE bsf
ADDQ $8, R15
ADDQ $8, SI
JMP cmp8
bsf:
// If those 8 bytes were not equal, XOR the two 8 byte values, and return
// the index of the first byte that differs. The BSF instruction finds the
// least significant 1 bit, the amd64 architecture is little-endian, and
// the shift by 3 converts a bit index to a byte index.
XORQ AX, BX
BSFQ BX, BX
SHRQ $3, BX
ADDQ BX, SI
// Convert from &src[ret] to ret.
SUBQ DX, SI
MOVQ SI, ret+40(FP)
RET
cmp1:
// In src's tail, compare 1 byte at a time.
CMPQ SI, R14
JAE extendMatchEnd
MOVB (R15), AX
MOVB (SI), BX
CMPB AX, BX
JNE extendMatchEnd
ADDQ $1, R15
ADDQ $1, SI
JMP cmp1
extendMatchEnd:
// Convert from &src[ret] to ret.
SUBQ DX, SI
MOVQ SI, ret+40(FP)
RET
// ----------------------------------------------------------------------------
// func encodeBlock(dst, src []byte) (d int)
//
// All local variables fit into registers, other than "var table". The register
// allocation:
// - AX . .
// - BX . .
// - CX 56 shift (note that amd64 shifts by non-immediates must use CX).
// - DX 64 &src[0], tableSize
// - SI 72 &src[s]
// - DI 80 &dst[d]
// - R9 88 sLimit
// - R10 . &src[nextEmit]
// - R11 96 prevHash, currHash, nextHash, offset
// - R12 104 &src[base], skip
// - R13 . &src[nextS], &src[len(src) - 8]
// - R14 . len(src), bytesBetweenHashLookups, &src[len(src)], x
// - R15 112 candidate
//
// The second column (56, 64, etc) is the stack offset to spill the registers
// when calling other functions. We could pack this slightly tighter, but it's
// simpler to have a dedicated spill map independent of the function called.
//
// "var table [maxTableSize]uint16" takes up 32768 bytes of stack space. An
// extra 56 bytes, to call other functions, and an extra 64 bytes, to spill
// local variables (registers) during calls gives 32768 + 56 + 64 = 32888.
TEXT ·encodeBlock(SB), 0, $32888-56
MOVQ dst_base+0(FP), DI
MOVQ src_base+24(FP), SI
MOVQ src_len+32(FP), R14
// shift, tableSize := uint32(32-8), 1<<8
MOVQ $24, CX
MOVQ $256, DX
calcShift:
// for ; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
// shift--
// }
CMPQ DX, $16384
JGE varTable
CMPQ DX, R14
JGE varTable
SUBQ $1, CX
SHLQ $1, DX
JMP calcShift
varTable:
// var table [maxTableSize]uint16
//
// In the asm code, unlike the Go code, we can zero-initialize only the
// first tableSize elements. Each uint16 element is 2 bytes and each MOVOU
// writes 16 bytes, so we can do only tableSize/8 writes instead of the
// 2048 writes that would zero-initialize all of table's 32768 bytes.
SHRQ $3, DX
LEAQ table-32768(SP), BX
PXOR X0, X0
memclr:
MOVOU X0, 0(BX)
ADDQ $16, BX
SUBQ $1, DX
JNZ memclr
// !!! DX = &src[0]
MOVQ SI, DX
// sLimit := len(src) - inputMargin
MOVQ R14, R9
SUBQ $15, R9
// !!! Pre-emptively spill CX, DX and R9 to the stack. Their values don't
// change for the rest of the function.
MOVQ CX, 56(SP)
MOVQ DX, 64(SP)
MOVQ R9, 88(SP)
// nextEmit := 0
MOVQ DX, R10
// s := 1
ADDQ $1, SI
// nextHash := hash(load32(src, s), shift)
MOVL 0(SI), R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
outer:
// for { etc }
// skip := 32
MOVQ $32, R12
// nextS := s
MOVQ SI, R13
// candidate := 0
MOVQ $0, R15
inner0:
// for { etc }
// s := nextS
MOVQ R13, SI
// bytesBetweenHashLookups := skip >> 5
MOVQ R12, R14
SHRQ $5, R14
// nextS = s + bytesBetweenHashLookups
ADDQ R14, R13
// skip += bytesBetweenHashLookups
ADDQ R14, R12
// if nextS > sLimit { goto emitRemainder }
MOVQ R13, AX
SUBQ DX, AX
CMPQ AX, R9
JA emitRemainder
// candidate = int(table[nextHash])
// XXX: MOVWQZX table-32768(SP)(R11*2), R15
// XXX: 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
BYTE $0x4e
BYTE $0x0f
BYTE $0xb7
BYTE $0x7c
BYTE $0x5c
BYTE $0x78
// table[nextHash] = uint16(s)
MOVQ SI, AX
SUBQ DX, AX
// XXX: MOVW AX, table-32768(SP)(R11*2)
// XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
BYTE $0x66
BYTE $0x42
BYTE $0x89
BYTE $0x44
BYTE $0x5c
BYTE $0x78
// nextHash = hash(load32(src, nextS), shift)
MOVL 0(R13), R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
// if load32(src, s) != load32(src, candidate) { continue } break
MOVL 0(SI), AX
MOVL (DX)(R15*1), BX
CMPL AX, BX
JNE inner0
fourByteMatch:
// As per the encode_other.go code:
//
// A 4-byte match has been found. We'll later see etc.
// !!! Jump to a fast path for short (<= 16 byte) literals. See the comment
// on inputMargin in encode.go.
MOVQ SI, AX
SUBQ R10, AX
CMPQ AX, $16
JLE emitLiteralFastPath
// ----------------------------------------
// Begin inline of the emitLiteral call.
//
// d += emitLiteral(dst[d:], src[nextEmit:s])
MOVL AX, BX
SUBL $1, BX
CMPL BX, $60
JLT inlineEmitLiteralOneByte
CMPL BX, $256
JLT inlineEmitLiteralTwoBytes
inlineEmitLiteralThreeBytes:
MOVB $0xf4, 0(DI)
MOVW BX, 1(DI)
ADDQ $3, DI
JMP inlineEmitLiteralMemmove
inlineEmitLiteralTwoBytes:
MOVB $0xf0, 0(DI)
MOVB BX, 1(DI)
ADDQ $2, DI
JMP inlineEmitLiteralMemmove
inlineEmitLiteralOneByte:
SHLB $2, BX
MOVB BX, 0(DI)
ADDQ $1, DI
inlineEmitLiteralMemmove:
// Spill local variables (registers) onto the stack; call; unspill.
//
// copy(dst[i:], lit)
//
// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
// DI, R10 and AX as arguments.
MOVQ DI, 0(SP)
MOVQ R10, 8(SP)
MOVQ AX, 16(SP)
ADDQ AX, DI // Finish the "d +=" part of "d += emitLiteral(etc)".
MOVQ SI, 72(SP)
MOVQ DI, 80(SP)
MOVQ R15, 112(SP)
CALL runtime·memmove(SB)
MOVQ 56(SP), CX
MOVQ 64(SP), DX
MOVQ 72(SP), SI
MOVQ 80(SP), DI
MOVQ 88(SP), R9
MOVQ 112(SP), R15
JMP inner1
inlineEmitLiteralEnd:
// End inline of the emitLiteral call.
// ----------------------------------------
emitLiteralFastPath:
// !!! Emit the 1-byte encoding "uint8(len(lit)-1)<<2".
MOVB AX, BX
SUBB $1, BX
SHLB $2, BX
MOVB BX, (DI)
ADDQ $1, DI
// !!! Implement the copy from lit to dst as a 16-byte load and store.
// (Encode's documentation says that dst and src must not overlap.)
//
// This always copies 16 bytes, instead of only len(lit) bytes, but that's
// OK. Subsequent iterations will fix up the overrun.
//
// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
// 16-byte loads and stores. This technique probably wouldn't be as
// effective on architectures that are fussier about alignment.
MOVOU 0(R10), X0
MOVOU X0, 0(DI)
ADDQ AX, DI
inner1:
// for { etc }
// base := s
MOVQ SI, R12
// !!! offset := base - candidate
MOVQ R12, R11
SUBQ R15, R11
SUBQ DX, R11
// ----------------------------------------
// Begin inline of the extendMatch call.
//
// s = extendMatch(src, candidate+4, s+4)
// !!! R14 = &src[len(src)]
MOVQ src_len+32(FP), R14
ADDQ DX, R14
// !!! R13 = &src[len(src) - 8]
MOVQ R14, R13
SUBQ $8, R13
// !!! R15 = &src[candidate + 4]
ADDQ $4, R15
ADDQ DX, R15
// !!! s += 4
ADDQ $4, SI
inlineExtendMatchCmp8:
// As long as we are 8 or more bytes before the end of src, we can load and
// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
CMPQ SI, R13
JA inlineExtendMatchCmp1
MOVQ (R15), AX
MOVQ (SI), BX
CMPQ AX, BX
JNE inlineExtendMatchBSF
ADDQ $8, R15
ADDQ $8, SI
JMP inlineExtendMatchCmp8
inlineExtendMatchBSF:
// If those 8 bytes were not equal, XOR the two 8 byte values, and return
// the index of the first byte that differs. The BSF instruction finds the
// least significant 1 bit, the amd64 architecture is little-endian, and
// the shift by 3 converts a bit index to a byte index.
XORQ AX, BX
BSFQ BX, BX
SHRQ $3, BX
ADDQ BX, SI
JMP inlineExtendMatchEnd
inlineExtendMatchCmp1:
// In src's tail, compare 1 byte at a time.
CMPQ SI, R14
JAE inlineExtendMatchEnd
MOVB (R15), AX
MOVB (SI), BX
CMPB AX, BX
JNE inlineExtendMatchEnd
ADDQ $1, R15
ADDQ $1, SI
JMP inlineExtendMatchCmp1
inlineExtendMatchEnd:
// End inline of the extendMatch call.
// ----------------------------------------
// ----------------------------------------
// Begin inline of the emitCopy call.
//
// d += emitCopy(dst[d:], base-candidate, s-base)
// !!! length := s - base
MOVQ SI, AX
SUBQ R12, AX
inlineEmitCopyLoop0:
// for length >= 68 { etc }
CMPL AX, $68
JLT inlineEmitCopyStep1
// Emit a length 64 copy, encoded as 3 bytes.
MOVB $0xfe, 0(DI)
MOVW R11, 1(DI)
ADDQ $3, DI
SUBL $64, AX
JMP inlineEmitCopyLoop0
inlineEmitCopyStep1:
// if length > 64 { etc }
CMPL AX, $64
JLE inlineEmitCopyStep2
// Emit a length 60 copy, encoded as 3 bytes.
MOVB $0xee, 0(DI)
MOVW R11, 1(DI)
ADDQ $3, DI
SUBL $60, AX
inlineEmitCopyStep2:
// if length >= 12 || offset >= 2048 { goto inlineEmitCopyStep3 }
CMPL AX, $12
JGE inlineEmitCopyStep3
CMPL R11, $2048
JGE inlineEmitCopyStep3
// Emit the remaining copy, encoded as 2 bytes.
MOVB R11, 1(DI)
SHRL $8, R11
SHLB $5, R11
SUBB $4, AX
SHLB $2, AX
ORB AX, R11
ORB $1, R11
MOVB R11, 0(DI)
ADDQ $2, DI
JMP inlineEmitCopyEnd
inlineEmitCopyStep3:
// Emit the remaining copy, encoded as 3 bytes.
SUBL $1, AX
SHLB $2, AX
ORB $2, AX
MOVB AX, 0(DI)
MOVW R11, 1(DI)
ADDQ $3, DI
inlineEmitCopyEnd:
// End inline of the emitCopy call.
// ----------------------------------------
// nextEmit = s
MOVQ SI, R10
// if s >= sLimit { goto emitRemainder }
MOVQ SI, AX
SUBQ DX, AX
CMPQ AX, R9
JAE emitRemainder
// As per the encode_other.go code:
//
// We could immediately etc.
// x := load64(src, s-1)
MOVQ -1(SI), R14
// prevHash := hash(uint32(x>>0), shift)
MOVL R14, R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
// table[prevHash] = uint16(s-1)
MOVQ SI, AX
SUBQ DX, AX
SUBQ $1, AX
// XXX: MOVW AX, table-32768(SP)(R11*2)
// XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
BYTE $0x66
BYTE $0x42
BYTE $0x89
BYTE $0x44
BYTE $0x5c
BYTE $0x78
// currHash := hash(uint32(x>>8), shift)
SHRQ $8, R14
MOVL R14, R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
// candidate = int(table[currHash])
// XXX: MOVWQZX table-32768(SP)(R11*2), R15
// XXX: 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15
BYTE $0x4e
BYTE $0x0f
BYTE $0xb7
BYTE $0x7c
BYTE $0x5c
BYTE $0x78
// table[currHash] = uint16(s)
ADDQ $1, AX
// XXX: MOVW AX, table-32768(SP)(R11*2)
// XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2)
BYTE $0x66
BYTE $0x42
BYTE $0x89
BYTE $0x44
BYTE $0x5c
BYTE $0x78
// if uint32(x>>8) == load32(src, candidate) { continue }
MOVL (DX)(R15*1), BX
CMPL R14, BX
JEQ inner1
// nextHash = hash(uint32(x>>16), shift)
SHRQ $8, R14
MOVL R14, R11
IMULL $0x1e35a7bd, R11
SHRL CX, R11
// s++
ADDQ $1, SI
// break out of the inner1 for loop, i.e. continue the outer loop.
JMP outer
emitRemainder:
// if nextEmit < len(src) { etc }
MOVQ src_len+32(FP), AX
ADDQ DX, AX
CMPQ R10, AX
JEQ encodeBlockEnd
// d += emitLiteral(dst[d:], src[nextEmit:])
//
// Push args.
MOVQ DI, 0(SP)
MOVQ $0, 8(SP) // Unnecessary, as the callee ignores it, but conservative.
MOVQ $0, 16(SP) // Unnecessary, as the callee ignores it, but conservative.
MOVQ R10, 24(SP)
SUBQ R10, AX
MOVQ AX, 32(SP)
MOVQ AX, 40(SP) // Unnecessary, as the callee ignores it, but conservative.
// Spill local variables (registers) onto the stack; call; unspill.
MOVQ DI, 80(SP)
CALL ·emitLiteral(SB)
MOVQ 80(SP), DI
// Finish the "d +=" part of "d += emitLiteral(etc)".
ADDQ 48(SP), DI
encodeBlockEnd:
MOVQ dst_base+0(FP), AX
SUBQ AX, DI
MOVQ DI, d+48(FP)
RET

View File

@ -1,722 +0,0 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
#include "textflag.h"
// The asm code generally follows the pure Go code in encode_other.go, except
// where marked with a "!!!".
// ----------------------------------------------------------------------------
// func emitLiteral(dst, lit []byte) int
//
// All local variables fit into registers. The register allocation:
// - R3 len(lit)
// - R4 n
// - R6 return value
// - R8 &dst[i]
// - R10 &lit[0]
//
// The 32 bytes of stack space is to call runtime·memmove.
//
// The unusual register allocation of local variables, such as R10 for the
// source pointer, matches the allocation used at the call site in encodeBlock,
// which makes it easier to manually inline this function.
TEXT ·emitLiteral(SB), NOSPLIT, $32-56
MOVD dst_base+0(FP), R8
MOVD lit_base+24(FP), R10
MOVD lit_len+32(FP), R3
MOVD R3, R6
MOVW R3, R4
SUBW $1, R4, R4
CMPW $60, R4
BLT oneByte
CMPW $256, R4
BLT twoBytes
threeBytes:
MOVD $0xf4, R2
MOVB R2, 0(R8)
MOVW R4, 1(R8)
ADD $3, R8, R8
ADD $3, R6, R6
B memmove
twoBytes:
MOVD $0xf0, R2
MOVB R2, 0(R8)
MOVB R4, 1(R8)
ADD $2, R8, R8
ADD $2, R6, R6
B memmove
oneByte:
LSLW $2, R4, R4
MOVB R4, 0(R8)
ADD $1, R8, R8
ADD $1, R6, R6
memmove:
MOVD R6, ret+48(FP)
// copy(dst[i:], lit)
//
// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
// R8, R10 and R3 as arguments.
MOVD R8, 8(RSP)
MOVD R10, 16(RSP)
MOVD R3, 24(RSP)
CALL runtime·memmove(SB)
RET
// ----------------------------------------------------------------------------
// func emitCopy(dst []byte, offset, length int) int
//
// All local variables fit into registers. The register allocation:
// - R3 length
// - R7 &dst[0]
// - R8 &dst[i]
// - R11 offset
//
// The unusual register allocation of local variables, such as R11 for the
// offset, matches the allocation used at the call site in encodeBlock, which
// makes it easier to manually inline this function.
TEXT ·emitCopy(SB), NOSPLIT, $0-48
MOVD dst_base+0(FP), R8
MOVD R8, R7
MOVD offset+24(FP), R11
MOVD length+32(FP), R3
loop0:
// for length >= 68 { etc }
CMPW $68, R3
BLT step1
// Emit a length 64 copy, encoded as 3 bytes.
MOVD $0xfe, R2
MOVB R2, 0(R8)
MOVW R11, 1(R8)
ADD $3, R8, R8
SUB $64, R3, R3
B loop0
step1:
// if length > 64 { etc }
CMP $64, R3
BLE step2
// Emit a length 60 copy, encoded as 3 bytes.
MOVD $0xee, R2
MOVB R2, 0(R8)
MOVW R11, 1(R8)
ADD $3, R8, R8
SUB $60, R3, R3
step2:
// if length >= 12 || offset >= 2048 { goto step3 }
CMP $12, R3
BGE step3
CMPW $2048, R11
BGE step3
// Emit the remaining copy, encoded as 2 bytes.
MOVB R11, 1(R8)
LSRW $3, R11, R11
AND $0xe0, R11, R11
SUB $4, R3, R3
LSLW $2, R3
AND $0xff, R3, R3
ORRW R3, R11, R11
ORRW $1, R11, R11
MOVB R11, 0(R8)
ADD $2, R8, R8
// Return the number of bytes written.
SUB R7, R8, R8
MOVD R8, ret+40(FP)
RET
step3:
// Emit the remaining copy, encoded as 3 bytes.
SUB $1, R3, R3
AND $0xff, R3, R3
LSLW $2, R3, R3
ORRW $2, R3, R3
MOVB R3, 0(R8)
MOVW R11, 1(R8)
ADD $3, R8, R8
// Return the number of bytes written.
SUB R7, R8, R8
MOVD R8, ret+40(FP)
RET
// ----------------------------------------------------------------------------
// func extendMatch(src []byte, i, j int) int
//
// All local variables fit into registers. The register allocation:
// - R6 &src[0]
// - R7 &src[j]
// - R13 &src[len(src) - 8]
// - R14 &src[len(src)]
// - R15 &src[i]
//
// The unusual register allocation of local variables, such as R15 for a source
// pointer, matches the allocation used at the call site in encodeBlock, which
// makes it easier to manually inline this function.
TEXT ·extendMatch(SB), NOSPLIT, $0-48
MOVD src_base+0(FP), R6
MOVD src_len+8(FP), R14
MOVD i+24(FP), R15
MOVD j+32(FP), R7
ADD R6, R14, R14
ADD R6, R15, R15
ADD R6, R7, R7
MOVD R14, R13
SUB $8, R13, R13
cmp8:
// As long as we are 8 or more bytes before the end of src, we can load and
// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
CMP R13, R7
BHI cmp1
MOVD (R15), R3
MOVD (R7), R4
CMP R4, R3
BNE bsf
ADD $8, R15, R15
ADD $8, R7, R7
B cmp8
bsf:
// If those 8 bytes were not equal, XOR the two 8 byte values, and return
// the index of the first byte that differs.
// RBIT reverses the bit order, then CLZ counts the leading zeros, the
// combination of which finds the least significant bit which is set.
// The arm64 architecture is little-endian, and the shift by 3 converts
// a bit index to a byte index.
EOR R3, R4, R4
RBIT R4, R4
CLZ R4, R4
ADD R4>>3, R7, R7
// Convert from &src[ret] to ret.
SUB R6, R7, R7
MOVD R7, ret+40(FP)
RET
cmp1:
// In src's tail, compare 1 byte at a time.
CMP R7, R14
BLS extendMatchEnd
MOVB (R15), R3
MOVB (R7), R4
CMP R4, R3
BNE extendMatchEnd
ADD $1, R15, R15
ADD $1, R7, R7
B cmp1
extendMatchEnd:
// Convert from &src[ret] to ret.
SUB R6, R7, R7
MOVD R7, ret+40(FP)
RET
// ----------------------------------------------------------------------------
// func encodeBlock(dst, src []byte) (d int)
//
// All local variables fit into registers, other than "var table". The register
// allocation:
// - R3 . .
// - R4 . .
// - R5 64 shift
// - R6 72 &src[0], tableSize
// - R7 80 &src[s]
// - R8 88 &dst[d]
// - R9 96 sLimit
// - R10 . &src[nextEmit]
// - R11 104 prevHash, currHash, nextHash, offset
// - R12 112 &src[base], skip
// - R13 . &src[nextS], &src[len(src) - 8]
// - R14 . len(src), bytesBetweenHashLookups, &src[len(src)], x
// - R15 120 candidate
// - R16 . hash constant, 0x1e35a7bd
// - R17 . &table
// - . 128 table
//
// The second column (64, 72, etc) is the stack offset to spill the registers
// when calling other functions. We could pack this slightly tighter, but it's
// simpler to have a dedicated spill map independent of the function called.
//
// "var table [maxTableSize]uint16" takes up 32768 bytes of stack space. An
// extra 64 bytes, to call other functions, and an extra 64 bytes, to spill
// local variables (registers) during calls gives 32768 + 64 + 64 = 32896.
TEXT ·encodeBlock(SB), 0, $32896-56
MOVD dst_base+0(FP), R8
MOVD src_base+24(FP), R7
MOVD src_len+32(FP), R14
// shift, tableSize := uint32(32-8), 1<<8
MOVD $24, R5
MOVD $256, R6
MOVW $0xa7bd, R16
MOVKW $(0x1e35<<16), R16
calcShift:
// for ; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
// shift--
// }
MOVD $16384, R2
CMP R2, R6
BGE varTable
CMP R14, R6
BGE varTable
SUB $1, R5, R5
LSL $1, R6, R6
B calcShift
varTable:
// var table [maxTableSize]uint16
//
// In the asm code, unlike the Go code, we can zero-initialize only the
// first tableSize elements. Each uint16 element is 2 bytes and each
// iterations writes 64 bytes, so we can do only tableSize/32 writes
// instead of the 2048 writes that would zero-initialize all of table's
// 32768 bytes. This clear could overrun the first tableSize elements, but
// it won't overrun the allocated stack size.
ADD $128, RSP, R17
MOVD R17, R4
// !!! R6 = &src[tableSize]
ADD R6<<1, R17, R6
memclr:
STP.P (ZR, ZR), 64(R4)
STP (ZR, ZR), -48(R4)
STP (ZR, ZR), -32(R4)
STP (ZR, ZR), -16(R4)
CMP R4, R6
BHI memclr
// !!! R6 = &src[0]
MOVD R7, R6
// sLimit := len(src) - inputMargin
MOVD R14, R9
SUB $15, R9, R9
// !!! Pre-emptively spill R5, R6 and R9 to the stack. Their values don't
// change for the rest of the function.
MOVD R5, 64(RSP)
MOVD R6, 72(RSP)
MOVD R9, 96(RSP)
// nextEmit := 0
MOVD R6, R10
// s := 1
ADD $1, R7, R7
// nextHash := hash(load32(src, s), shift)
MOVW 0(R7), R11
MULW R16, R11, R11
LSRW R5, R11, R11
outer:
// for { etc }
// skip := 32
MOVD $32, R12
// nextS := s
MOVD R7, R13
// candidate := 0
MOVD $0, R15
inner0:
// for { etc }
// s := nextS
MOVD R13, R7
// bytesBetweenHashLookups := skip >> 5
MOVD R12, R14
LSR $5, R14, R14
// nextS = s + bytesBetweenHashLookups
ADD R14, R13, R13
// skip += bytesBetweenHashLookups
ADD R14, R12, R12
// if nextS > sLimit { goto emitRemainder }
MOVD R13, R3
SUB R6, R3, R3
CMP R9, R3
BHI emitRemainder
// candidate = int(table[nextHash])
MOVHU 0(R17)(R11<<1), R15
// table[nextHash] = uint16(s)
MOVD R7, R3
SUB R6, R3, R3
MOVH R3, 0(R17)(R11<<1)
// nextHash = hash(load32(src, nextS), shift)
MOVW 0(R13), R11
MULW R16, R11
LSRW R5, R11, R11
// if load32(src, s) != load32(src, candidate) { continue } break
MOVW 0(R7), R3
MOVW (R6)(R15), R4
CMPW R4, R3
BNE inner0
fourByteMatch:
// As per the encode_other.go code:
//
// A 4-byte match has been found. We'll later see etc.
// !!! Jump to a fast path for short (<= 16 byte) literals. See the comment
// on inputMargin in encode.go.
MOVD R7, R3
SUB R10, R3, R3
CMP $16, R3
BLE emitLiteralFastPath
// ----------------------------------------
// Begin inline of the emitLiteral call.
//
// d += emitLiteral(dst[d:], src[nextEmit:s])
MOVW R3, R4
SUBW $1, R4, R4
MOVW $60, R2
CMPW R2, R4
BLT inlineEmitLiteralOneByte
MOVW $256, R2
CMPW R2, R4
BLT inlineEmitLiteralTwoBytes
inlineEmitLiteralThreeBytes:
MOVD $0xf4, R1
MOVB R1, 0(R8)
MOVW R4, 1(R8)
ADD $3, R8, R8
B inlineEmitLiteralMemmove
inlineEmitLiteralTwoBytes:
MOVD $0xf0, R1
MOVB R1, 0(R8)
MOVB R4, 1(R8)
ADD $2, R8, R8
B inlineEmitLiteralMemmove
inlineEmitLiteralOneByte:
LSLW $2, R4, R4
MOVB R4, 0(R8)
ADD $1, R8, R8
inlineEmitLiteralMemmove:
// Spill local variables (registers) onto the stack; call; unspill.
//
// copy(dst[i:], lit)
//
// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
// R8, R10 and R3 as arguments.
MOVD R8, 8(RSP)
MOVD R10, 16(RSP)
MOVD R3, 24(RSP)
// Finish the "d +=" part of "d += emitLiteral(etc)".
ADD R3, R8, R8
MOVD R7, 80(RSP)
MOVD R8, 88(RSP)
MOVD R15, 120(RSP)
CALL runtime·memmove(SB)
MOVD 64(RSP), R5
MOVD 72(RSP), R6
MOVD 80(RSP), R7
MOVD 88(RSP), R8
MOVD 96(RSP), R9
MOVD 120(RSP), R15
ADD $128, RSP, R17
MOVW $0xa7bd, R16
MOVKW $(0x1e35<<16), R16
B inner1
inlineEmitLiteralEnd:
// End inline of the emitLiteral call.
// ----------------------------------------
emitLiteralFastPath:
// !!! Emit the 1-byte encoding "uint8(len(lit)-1)<<2".
MOVB R3, R4
SUBW $1, R4, R4
AND $0xff, R4, R4
LSLW $2, R4, R4
MOVB R4, (R8)
ADD $1, R8, R8
// !!! Implement the copy from lit to dst as a 16-byte load and store.
// (Encode's documentation says that dst and src must not overlap.)
//
// This always copies 16 bytes, instead of only len(lit) bytes, but that's
// OK. Subsequent iterations will fix up the overrun.
//
// Note that on arm64, it is legal and cheap to issue unaligned 8-byte or
// 16-byte loads and stores. This technique probably wouldn't be as
// effective on architectures that are fussier about alignment.
LDP 0(R10), (R0, R1)
STP (R0, R1), 0(R8)
ADD R3, R8, R8
inner1:
// for { etc }
// base := s
MOVD R7, R12
// !!! offset := base - candidate
MOVD R12, R11
SUB R15, R11, R11
SUB R6, R11, R11
// ----------------------------------------
// Begin inline of the extendMatch call.
//
// s = extendMatch(src, candidate+4, s+4)
// !!! R14 = &src[len(src)]
MOVD src_len+32(FP), R14
ADD R6, R14, R14
// !!! R13 = &src[len(src) - 8]
MOVD R14, R13
SUB $8, R13, R13
// !!! R15 = &src[candidate + 4]
ADD $4, R15, R15
ADD R6, R15, R15
// !!! s += 4
ADD $4, R7, R7
inlineExtendMatchCmp8:
// As long as we are 8 or more bytes before the end of src, we can load and
// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
CMP R13, R7
BHI inlineExtendMatchCmp1
MOVD (R15), R3
MOVD (R7), R4
CMP R4, R3
BNE inlineExtendMatchBSF
ADD $8, R15, R15
ADD $8, R7, R7
B inlineExtendMatchCmp8
inlineExtendMatchBSF:
// If those 8 bytes were not equal, XOR the two 8 byte values, and return
// the index of the first byte that differs.
// RBIT reverses the bit order, then CLZ counts the leading zeros, the
// combination of which finds the least significant bit which is set.
// The arm64 architecture is little-endian, and the shift by 3 converts
// a bit index to a byte index.
EOR R3, R4, R4
RBIT R4, R4
CLZ R4, R4
ADD R4>>3, R7, R7
B inlineExtendMatchEnd
inlineExtendMatchCmp1:
// In src's tail, compare 1 byte at a time.
CMP R7, R14
BLS inlineExtendMatchEnd
MOVB (R15), R3
MOVB (R7), R4
CMP R4, R3
BNE inlineExtendMatchEnd
ADD $1, R15, R15
ADD $1, R7, R7
B inlineExtendMatchCmp1
inlineExtendMatchEnd:
// End inline of the extendMatch call.
// ----------------------------------------
// ----------------------------------------
// Begin inline of the emitCopy call.
//
// d += emitCopy(dst[d:], base-candidate, s-base)
// !!! length := s - base
MOVD R7, R3
SUB R12, R3, R3
inlineEmitCopyLoop0:
// for length >= 68 { etc }
MOVW $68, R2
CMPW R2, R3
BLT inlineEmitCopyStep1
// Emit a length 64 copy, encoded as 3 bytes.
MOVD $0xfe, R1
MOVB R1, 0(R8)
MOVW R11, 1(R8)
ADD $3, R8, R8
SUBW $64, R3, R3
B inlineEmitCopyLoop0
inlineEmitCopyStep1:
// if length > 64 { etc }
MOVW $64, R2
CMPW R2, R3
BLE inlineEmitCopyStep2
// Emit a length 60 copy, encoded as 3 bytes.
MOVD $0xee, R1
MOVB R1, 0(R8)
MOVW R11, 1(R8)
ADD $3, R8, R8
SUBW $60, R3, R3
inlineEmitCopyStep2:
// if length >= 12 || offset >= 2048 { goto inlineEmitCopyStep3 }
MOVW $12, R2
CMPW R2, R3
BGE inlineEmitCopyStep3
MOVW $2048, R2
CMPW R2, R11
BGE inlineEmitCopyStep3
// Emit the remaining copy, encoded as 2 bytes.
MOVB R11, 1(R8)
LSRW $8, R11, R11
LSLW $5, R11, R11
SUBW $4, R3, R3
AND $0xff, R3, R3
LSLW $2, R3, R3
ORRW R3, R11, R11
ORRW $1, R11, R11
MOVB R11, 0(R8)
ADD $2, R8, R8
B inlineEmitCopyEnd
inlineEmitCopyStep3:
// Emit the remaining copy, encoded as 3 bytes.
SUBW $1, R3, R3
LSLW $2, R3, R3
ORRW $2, R3, R3
MOVB R3, 0(R8)
MOVW R11, 1(R8)
ADD $3, R8, R8
inlineEmitCopyEnd:
// End inline of the emitCopy call.
// ----------------------------------------
// nextEmit = s
MOVD R7, R10
// if s >= sLimit { goto emitRemainder }
MOVD R7, R3
SUB R6, R3, R3
CMP R3, R9
BLS emitRemainder
// As per the encode_other.go code:
//
// We could immediately etc.
// x := load64(src, s-1)
MOVD -1(R7), R14
// prevHash := hash(uint32(x>>0), shift)
MOVW R14, R11
MULW R16, R11, R11
LSRW R5, R11, R11
// table[prevHash] = uint16(s-1)
MOVD R7, R3
SUB R6, R3, R3
SUB $1, R3, R3
MOVHU R3, 0(R17)(R11<<1)
// currHash := hash(uint32(x>>8), shift)
LSR $8, R14, R14
MOVW R14, R11
MULW R16, R11, R11
LSRW R5, R11, R11
// candidate = int(table[currHash])
MOVHU 0(R17)(R11<<1), R15
// table[currHash] = uint16(s)
ADD $1, R3, R3
MOVHU R3, 0(R17)(R11<<1)
// if uint32(x>>8) == load32(src, candidate) { continue }
MOVW (R6)(R15), R4
CMPW R4, R14
BEQ inner1
// nextHash = hash(uint32(x>>16), shift)
LSR $8, R14, R14
MOVW R14, R11
MULW R16, R11, R11
LSRW R5, R11, R11
// s++
ADD $1, R7, R7
// break out of the inner1 for loop, i.e. continue the outer loop.
B outer
emitRemainder:
// if nextEmit < len(src) { etc }
MOVD src_len+32(FP), R3
ADD R6, R3, R3
CMP R3, R10
BEQ encodeBlockEnd
// d += emitLiteral(dst[d:], src[nextEmit:])
//
// Push args.
MOVD R8, 8(RSP)
MOVD $0, 16(RSP) // Unnecessary, as the callee ignores it, but conservative.
MOVD $0, 24(RSP) // Unnecessary, as the callee ignores it, but conservative.
MOVD R10, 32(RSP)
SUB R10, R3, R3
MOVD R3, 40(RSP)
MOVD R3, 48(RSP) // Unnecessary, as the callee ignores it, but conservative.
// Spill local variables (registers) onto the stack; call; unspill.
MOVD R8, 88(RSP)
CALL ·emitLiteral(SB)
MOVD 88(RSP), R8
// Finish the "d +=" part of "d += emitLiteral(etc)".
MOVD 56(RSP), R1
ADD R1, R8, R8
encodeBlockEnd:
MOVD dst_base+0(FP), R3
SUB R3, R8, R8
MOVD R8, d+48(FP)
RET

View File

@ -1,30 +0,0 @@
// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine
// +build gc
// +build !noasm
// +build amd64 arm64
package snappy
// emitLiteral has the same semantics as in encode_other.go.
//
//go:noescape
func emitLiteral(dst, lit []byte) int
// emitCopy has the same semantics as in encode_other.go.
//
//go:noescape
func emitCopy(dst []byte, offset, length int) int
// extendMatch has the same semantics as in encode_other.go.
//
//go:noescape
func extendMatch(src []byte, i, j int) int
// encodeBlock has the same semantics as in encode_other.go.
//
//go:noescape
func encodeBlock(dst, src []byte) (d int)

View File

@ -1,238 +0,0 @@
// Copyright 2016 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64,!arm64 appengine !gc noasm
package snappy
func load32(b []byte, i int) uint32 {
b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func load64(b []byte, i int) uint64 {
b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
// emitLiteral writes a literal chunk and returns the number of bytes written.
//
// It assumes that:
// dst is long enough to hold the encoded bytes
// 1 <= len(lit) && len(lit) <= 65536
func emitLiteral(dst, lit []byte) int {
i, n := 0, uint(len(lit)-1)
switch {
case n < 60:
dst[0] = uint8(n)<<2 | tagLiteral
i = 1
case n < 1<<8:
dst[0] = 60<<2 | tagLiteral
dst[1] = uint8(n)
i = 2
default:
dst[0] = 61<<2 | tagLiteral
dst[1] = uint8(n)
dst[2] = uint8(n >> 8)
i = 3
}
return i + copy(dst[i:], lit)
}
// emitCopy writes a copy chunk and returns the number of bytes written.
//
// It assumes that:
// dst is long enough to hold the encoded bytes
// 1 <= offset && offset <= 65535
// 4 <= length && length <= 65535
func emitCopy(dst []byte, offset, length int) int {
i := 0
// The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The
// threshold for this loop is a little higher (at 68 = 64 + 4), and the
// length emitted down below is is a little lower (at 60 = 64 - 4), because
// it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed
// by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as
// a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as
// 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a
// tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an
// encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1.
for length >= 68 {
// Emit a length 64 copy, encoded as 3 bytes.
dst[i+0] = 63<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
i += 3
length -= 64
}
if length > 64 {
// Emit a length 60 copy, encoded as 3 bytes.
dst[i+0] = 59<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
i += 3
length -= 60
}
if length >= 12 || offset >= 2048 {
// Emit the remaining copy, encoded as 3 bytes.
dst[i+0] = uint8(length-1)<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
return i + 3
}
// Emit the remaining copy, encoded as 2 bytes.
dst[i+0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1
dst[i+1] = uint8(offset)
return i + 2
}
// extendMatch returns the largest k such that k <= len(src) and that
// src[i:i+k-j] and src[j:k] have the same contents.
//
// It assumes that:
// 0 <= i && i < j && j <= len(src)
func extendMatch(src []byte, i, j int) int {
for ; j < len(src) && src[i] == src[j]; i, j = i+1, j+1 {
}
return j
}
func hash(u, shift uint32) uint32 {
return (u * 0x1e35a7bd) >> shift
}
// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
// len(dst) >= MaxEncodedLen(len(src)) &&
// minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
func encodeBlock(dst, src []byte) (d int) {
// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
// The table element type is uint16, as s < sLimit and sLimit < len(src)
// and len(src) <= maxBlockSize and maxBlockSize == 65536.
const (
maxTableSize = 1 << 14
// tableMask is redundant, but helps the compiler eliminate bounds
// checks.
tableMask = maxTableSize - 1
)
shift := uint32(32 - 8)
for tableSize := 1 << 8; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
shift--
}
// In Go, all array elements are zero-initialized, so there is no advantage
// to a smaller tableSize per se. However, it matches the C++ algorithm,
// and in the asm versions of this code, we can get away with zeroing only
// the first tableSize elements.
var table [maxTableSize]uint16
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := len(src) - inputMargin
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := 0
// The encoded form must start with a literal, as there are no previous
// bytes to copy, so we start looking for hash matches at s == 1.
s := 1
nextHash := hash(load32(src, s), shift)
for {
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned (or skipped), look at every third byte, etc.. When a match
// is found, immediately go back to looking at every byte. This is a
// small loss (~5% performance, ~0.1% density) for compressible data
// due to more bookkeeping, but for non-compressible data (such as
// JPEG) it's a huge win since the compressor quickly "realizes" the
// data is incompressible and doesn't bother looking for matches
// everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
skip := 32
nextS := s
candidate := 0
for {
s = nextS
bytesBetweenHashLookups := skip >> 5
nextS = s + bytesBetweenHashLookups
skip += bytesBetweenHashLookups
if nextS > sLimit {
goto emitRemainder
}
candidate = int(table[nextHash&tableMask])
table[nextHash&tableMask] = uint16(s)
nextHash = hash(load32(src, nextS), shift)
if load32(src, s) == load32(src, candidate) {
break
}
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
d += emitLiteral(dst[d:], src[nextEmit:s])
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
base := s
// Extend the 4-byte match as long as possible.
//
// This is an inlined version of:
// s = extendMatch(src, candidate+4, s+4)
s += 4
for i := candidate + 4; s < len(src) && src[i] == src[s]; i, s = i+1, s+1 {
}
d += emitCopy(dst[d:], base-candidate, s-base)
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load64(src, s-1)
prevHash := hash(uint32(x>>0), shift)
table[prevHash&tableMask] = uint16(s - 1)
currHash := hash(uint32(x>>8), shift)
candidate = int(table[currHash&tableMask])
table[currHash&tableMask] = uint16(s)
if uint32(x>>8) != load32(src, candidate) {
nextHash = hash(uint32(x>>16), shift)
s++
break
}
}
}
emitRemainder:
if nextEmit < len(src) {
d += emitLiteral(dst[d:], src[nextEmit:])
}
return d
}

903
vendor/github.com/klauspost/compress/flate/deflate.go generated vendored Normal file
View File

@ -0,0 +1,903 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Copyright (c) 2015 Klaus Post
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"encoding/binary"
"fmt"
"io"
"math"
)
const (
NoCompression = 0
BestSpeed = 1
BestCompression = 9
DefaultCompression = -1
// HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
// entropy encoding. This mode is useful in compressing data that has
// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
// that lacks an entropy encoder. Compression gains are achieved when
// certain bytes in the input stream occur more frequently than others.
//
// Note that HuffmanOnly produces a compressed output that is
// RFC 1951 compliant. That is, any valid DEFLATE decompressor will
// continue to be able to decompress this output.
HuffmanOnly = -2
ConstantCompression = HuffmanOnly // compatibility alias.
logWindowSize = 15
windowSize = 1 << logWindowSize
windowMask = windowSize - 1
logMaxOffsetSize = 15 // Standard DEFLATE
minMatchLength = 4 // The smallest match that the compressor looks for
maxMatchLength = 258 // The longest match for the compressor
minOffsetSize = 1 // The shortest offset that makes any sense
// The maximum number of tokens we will encode at the time.
// Smaller sizes usually creates less optimal blocks.
// Bigger can make context switching slow.
// We use this for levels 7-9, so we make it big.
maxFlateBlockTokens = 1 << 15
maxStoreBlockSize = 65535
hashBits = 17 // After 17 performance degrades
hashSize = 1 << hashBits
hashMask = (1 << hashBits) - 1
hashShift = (hashBits + minMatchLength - 1) / minMatchLength
maxHashOffset = 1 << 28
skipNever = math.MaxInt32
debugDeflate = false
)
type compressionLevel struct {
good, lazy, nice, chain, fastSkipHashing, level int
}
// Compression levels have been rebalanced from zlib deflate defaults
// to give a bigger spread in speed and compression.
// See https://blog.klauspost.com/rebalancing-deflate-compression-levels/
var levels = []compressionLevel{
{}, // 0
// Level 1-6 uses specialized algorithm - values not used
{0, 0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 2},
{0, 0, 0, 0, 0, 3},
{0, 0, 0, 0, 0, 4},
{0, 0, 0, 0, 0, 5},
{0, 0, 0, 0, 0, 6},
// Levels 7-9 use increasingly more lazy matching
// and increasingly stringent conditions for "good enough".
{8, 12, 16, 24, skipNever, 7},
{16, 30, 40, 64, skipNever, 8},
{32, 258, 258, 1024, skipNever, 9},
}
// advancedState contains state for the advanced levels, with bigger hash tables, etc.
type advancedState struct {
// deflate state
length int
offset int
maxInsertIndex int
chainHead int
hashOffset int
ii uint16 // position of last match, intended to overflow to reset.
// input window: unprocessed data is window[index:windowEnd]
index int
estBitsPerByte int
hashMatch [maxMatchLength + minMatchLength]uint32
// Input hash chains
// hashHead[hashValue] contains the largest inputIndex with the specified hash value
// If hashHead[hashValue] is within the current window, then
// hashPrev[hashHead[hashValue] & windowMask] contains the previous index
// with the same hash value.
hashHead [hashSize]uint32
hashPrev [windowSize]uint32
}
type compressor struct {
compressionLevel
h *huffmanEncoder
w *huffmanBitWriter
// compression algorithm
fill func(*compressor, []byte) int // copy data to window
step func(*compressor) // process window
window []byte
windowEnd int
blockStart int // window index where current tokens start
err error
// queued output tokens
tokens tokens
fast fastEnc
state *advancedState
sync bool // requesting flush
byteAvailable bool // if true, still need to process window[index-1].
}
func (d *compressor) fillDeflate(b []byte) int {
s := d.state
if s.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
// shift the window by windowSize
copy(d.window[:], d.window[windowSize:2*windowSize])
s.index -= windowSize
d.windowEnd -= windowSize
if d.blockStart >= windowSize {
d.blockStart -= windowSize
} else {
d.blockStart = math.MaxInt32
}
s.hashOffset += windowSize
if s.hashOffset > maxHashOffset {
delta := s.hashOffset - 1
s.hashOffset -= delta
s.chainHead -= delta
// Iterate over slices instead of arrays to avoid copying
// the entire table onto the stack (Issue #18625).
for i, v := range s.hashPrev[:] {
if int(v) > delta {
s.hashPrev[i] = uint32(int(v) - delta)
} else {
s.hashPrev[i] = 0
}
}
for i, v := range s.hashHead[:] {
if int(v) > delta {
s.hashHead[i] = uint32(int(v) - delta)
} else {
s.hashHead[i] = 0
}
}
}
}
n := copy(d.window[d.windowEnd:], b)
d.windowEnd += n
return n
}
func (d *compressor) writeBlock(tok *tokens, index int, eof bool) error {
if index > 0 || eof {
var window []byte
if d.blockStart <= index {
window = d.window[d.blockStart:index]
}
d.blockStart = index
//d.w.writeBlock(tok, eof, window)
d.w.writeBlockDynamic(tok, eof, window, d.sync)
return d.w.err
}
return nil
}
// writeBlockSkip writes the current block and uses the number of tokens
// to determine if the block should be stored on no matches, or
// only huffman encoded.
func (d *compressor) writeBlockSkip(tok *tokens, index int, eof bool) error {
if index > 0 || eof {
if d.blockStart <= index {
window := d.window[d.blockStart:index]
// If we removed less than a 64th of all literals
// we huffman compress the block.
if int(tok.n) > len(window)-int(tok.n>>6) {
d.w.writeBlockHuff(eof, window, d.sync)
} else {
// Write a dynamic huffman block.
d.w.writeBlockDynamic(tok, eof, window, d.sync)
}
} else {
d.w.writeBlock(tok, eof, nil)
}
d.blockStart = index
return d.w.err
}
return nil
}
// fillWindow will fill the current window with the supplied
// dictionary and calculate all hashes.
// This is much faster than doing a full encode.
// Should only be used after a start/reset.
func (d *compressor) fillWindow(b []byte) {
// Do not fill window if we are in store-only or huffman mode.
if d.level <= 0 {
return
}
if d.fast != nil {
// encode the last data, but discard the result
if len(b) > maxMatchOffset {
b = b[len(b)-maxMatchOffset:]
}
d.fast.Encode(&d.tokens, b)
d.tokens.Reset()
return
}
s := d.state
// If we are given too much, cut it.
if len(b) > windowSize {
b = b[len(b)-windowSize:]
}
// Add all to window.
n := copy(d.window[d.windowEnd:], b)
// Calculate 256 hashes at the time (more L1 cache hits)
loops := (n + 256 - minMatchLength) / 256
for j := 0; j < loops; j++ {
startindex := j * 256
end := startindex + 256 + minMatchLength - 1
if end > n {
end = n
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize <= 0 {
continue
}
dst := s.hashMatch[:dstSize]
bulkHash4(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
s.hashPrev[di&windowMask] = s.hashHead[newH]
// Set the head of the hash chain to us.
s.hashHead[newH] = uint32(di + s.hashOffset)
}
}
// Update window information.
d.windowEnd += n
s.index = n
}
// Try to find a match starting at index whose length is greater than prevSize.
// We only look at chainCount possibilities before giving up.
// pos = s.index, prevHead = s.chainHead-s.hashOffset, prevLength=minMatchLength-1, lookahead
func (d *compressor) findMatch(pos int, prevHead int, lookahead int) (length, offset int, ok bool) {
minMatchLook := maxMatchLength
if lookahead < minMatchLook {
minMatchLook = lookahead
}
win := d.window[0 : pos+minMatchLook]
// We quit when we get a match that's at least nice long
nice := len(win) - pos
if d.nice < nice {
nice = d.nice
}
// If we've got a match that's good enough, only look in 1/4 the chain.
tries := d.chain
length = minMatchLength - 1
wEnd := win[pos+length]
wPos := win[pos:]
minIndex := pos - windowSize
if minIndex < 0 {
minIndex = 0
}
offset = 0
cGain := 0
if d.chain < 100 {
for i := prevHead; tries > 0; tries-- {
if wEnd == win[i+length] {
n := matchLen(win[i:i+minMatchLook], wPos)
if n > length {
length = n
offset = pos - i
ok = true
if n >= nice {
// The match is good enough that we don't try to find a better one.
break
}
wEnd = win[pos+n]
}
}
if i <= minIndex {
// hashPrev[i & windowMask] has already been overwritten, so stop now.
break
}
i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset
if i < minIndex {
break
}
}
return
}
// Some like it higher (CSV), some like it lower (JSON)
const baseCost = 6
// Base is 4 bytes at with an additional cost.
// Matches must be better than this.
for i := prevHead; tries > 0; tries-- {
if wEnd == win[i+length] {
n := matchLen(win[i:i+minMatchLook], wPos)
if n > length {
// Calculate gain. Estimate
newGain := d.h.bitLengthRaw(wPos[:n]) - int(offsetExtraBits[offsetCode(uint32(pos-i))]) - baseCost - int(lengthExtraBits[lengthCodes[(n-3)&255]])
//fmt.Println(n, "gain:", newGain, "prev:", cGain, "raw:", d.h.bitLengthRaw(wPos[:n]))
if newGain > cGain {
length = n
offset = pos - i
cGain = newGain
ok = true
if n >= nice {
// The match is good enough that we don't try to find a better one.
break
}
wEnd = win[pos+n]
}
}
}
if i <= minIndex {
// hashPrev[i & windowMask] has already been overwritten, so stop now.
break
}
i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset
if i < minIndex {
break
}
}
return
}
func (d *compressor) writeStoredBlock(buf []byte) error {
if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
return d.w.err
}
d.w.writeBytes(buf)
return d.w.err
}
// hash4 returns a hash representation of the first 4 bytes
// of the supplied slice.
// The caller must ensure that len(b) >= 4.
func hash4(b []byte) uint32 {
return hash4u(binary.LittleEndian.Uint32(b), hashBits)
}
// bulkHash4 will compute hashes using the same
// algorithm as hash4
func bulkHash4(b []byte, dst []uint32) {
if len(b) < 4 {
return
}
hb := binary.LittleEndian.Uint32(b)
dst[0] = hash4u(hb, hashBits)
end := len(b) - 4 + 1
for i := 1; i < end; i++ {
hb = (hb >> 8) | uint32(b[i+3])<<24
dst[i] = hash4u(hb, hashBits)
}
}
func (d *compressor) initDeflate() {
d.window = make([]byte, 2*windowSize)
d.byteAvailable = false
d.err = nil
if d.state == nil {
return
}
s := d.state
s.index = 0
s.hashOffset = 1
s.length = minMatchLength - 1
s.offset = 0
s.chainHead = -1
}
// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
// meaning it always has lazy matching on.
func (d *compressor) deflateLazy() {
s := d.state
// Sanity enables additional runtime tests.
// It's intended to be used during development
// to supplement the currently ad-hoc unit tests.
const sanity = debugDeflate
if d.windowEnd-s.index < minMatchLength+maxMatchLength && !d.sync {
return
}
if d.windowEnd != s.index && d.chain > 100 {
// Get literal huffman coder.
if d.h == nil {
d.h = newHuffmanEncoder(maxFlateBlockTokens)
}
var tmp [256]uint16
for _, v := range d.window[s.index:d.windowEnd] {
tmp[v]++
}
d.h.generate(tmp[:], 15)
}
s.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
for {
if sanity && s.index > d.windowEnd {
panic("index > windowEnd")
}
lookahead := d.windowEnd - s.index
if lookahead < minMatchLength+maxMatchLength {
if !d.sync {
return
}
if sanity && s.index > d.windowEnd {
panic("index > windowEnd")
}
if lookahead == 0 {
// Flush current output block if any.
if d.byteAvailable {
// There is still one pending token that needs to be flushed
d.tokens.AddLiteral(d.window[s.index-1])
d.byteAvailable = false
}
if d.tokens.n > 0 {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
return
}
}
if s.index < s.maxInsertIndex {
// Update the hash
hash := hash4(d.window[s.index:])
ch := s.hashHead[hash]
s.chainHead = int(ch)
s.hashPrev[s.index&windowMask] = ch
s.hashHead[hash] = uint32(s.index + s.hashOffset)
}
prevLength := s.length
prevOffset := s.offset
s.length = minMatchLength - 1
s.offset = 0
minIndex := s.index - windowSize
if minIndex < 0 {
minIndex = 0
}
if s.chainHead-s.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
if newLength, newOffset, ok := d.findMatch(s.index, s.chainHead-s.hashOffset, lookahead); ok {
s.length = newLength
s.offset = newOffset
}
}
if prevLength >= minMatchLength && s.length <= prevLength {
// Check for better match at end...
//
// checkOff must be >=2 since we otherwise risk checking s.index
// Offset of 2 seems to yield best results.
const checkOff = 2
prevIndex := s.index - 1
if prevIndex+prevLength+checkOff < s.maxInsertIndex {
end := lookahead
if lookahead > maxMatchLength {
end = maxMatchLength
}
end += prevIndex
idx := prevIndex + prevLength - (4 - checkOff)
h := hash4(d.window[idx:])
ch2 := int(s.hashHead[h]) - s.hashOffset - prevLength + (4 - checkOff)
if ch2 > minIndex {
length := matchLen(d.window[prevIndex:end], d.window[ch2:])
// It seems like a pure length metric is best.
if length > prevLength {
prevLength = length
prevOffset = prevIndex - ch2
}
}
}
// There was a match at the previous step, and the current match is
// not better. Output the previous match.
d.tokens.AddMatch(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
// Insert in the hash table all strings up to the end of the match.
// index and index-1 are already inserted. If there is not enough
// lookahead, the last two strings are not inserted into the hash
// table.
newIndex := s.index + prevLength - 1
// Calculate missing hashes
end := newIndex
if end > s.maxInsertIndex {
end = s.maxInsertIndex
}
end += minMatchLength - 1
startindex := s.index + 1
if startindex > s.maxInsertIndex {
startindex = s.maxInsertIndex
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize > 0 {
dst := s.hashMatch[:dstSize]
bulkHash4(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
s.hashPrev[di&windowMask] = s.hashHead[newH]
// Set the head of the hash chain to us.
s.hashHead[newH] = uint32(di + s.hashOffset)
}
}
s.index = newIndex
d.byteAvailable = false
s.length = minMatchLength - 1
if d.tokens.n == maxFlateBlockTokens {
// The block includes the current character
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
s.ii = 0
} else {
// Reset, if we got a match this run.
if s.length >= minMatchLength {
s.ii = 0
}
// We have a byte waiting. Emit it.
if d.byteAvailable {
s.ii++
d.tokens.AddLiteral(d.window[s.index-1])
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
s.index++
// If we have a long run of no matches, skip additional bytes
// Resets when s.ii overflows after 64KB.
if n := int(s.ii) - d.chain; n > 0 {
n = 1 + int(n>>6)
for j := 0; j < n; j++ {
if s.index >= d.windowEnd-1 {
break
}
d.tokens.AddLiteral(d.window[s.index-1])
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
// Index...
if s.index < s.maxInsertIndex {
h := hash4(d.window[s.index:])
ch := s.hashHead[h]
s.chainHead = int(ch)
s.hashPrev[s.index&windowMask] = ch
s.hashHead[h] = uint32(s.index + s.hashOffset)
}
s.index++
}
// Flush last byte
d.tokens.AddLiteral(d.window[s.index-1])
d.byteAvailable = false
// s.length = minMatchLength - 1 // not needed, since s.ii is reset above, so it should never be > minMatchLength
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
return
}
d.tokens.Reset()
}
}
} else {
s.index++
d.byteAvailable = true
}
}
}
}
func (d *compressor) store() {
if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
d.windowEnd = 0
}
}
// fillWindow will fill the buffer with data for huffman-only compression.
// The number of bytes copied is returned.
func (d *compressor) fillBlock(b []byte) int {
n := copy(d.window[d.windowEnd:], b)
d.windowEnd += n
return n
}
// storeHuff will compress and store the currently added data,
// if enough has been accumulated or we at the end of the stream.
// Any error that occurred will be in d.err
func (d *compressor) storeHuff() {
if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
return
}
d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
d.windowEnd = 0
}
// storeFast will compress and store the currently added data,
// if enough has been accumulated or we at the end of the stream.
// Any error that occurred will be in d.err
func (d *compressor) storeFast() {
// We only compress if we have maxStoreBlockSize.
if d.windowEnd < len(d.window) {
if !d.sync {
return
}
// Handle extremely small sizes.
if d.windowEnd < 128 {
if d.windowEnd == 0 {
return
}
if d.windowEnd <= 32 {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
} else {
d.w.writeBlockHuff(false, d.window[:d.windowEnd], true)
d.err = d.w.err
}
d.tokens.Reset()
d.windowEnd = 0
d.fast.Reset()
return
}
}
d.fast.Encode(&d.tokens, d.window[:d.windowEnd])
// If we made zero matches, store the block as is.
if d.tokens.n == 0 {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
// If we removed less than 1/16th, huffman compress the block.
} else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) {
d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
} else {
d.w.writeBlockDynamic(&d.tokens, false, d.window[:d.windowEnd], d.sync)
d.err = d.w.err
}
d.tokens.Reset()
d.windowEnd = 0
}
// write will add input byte to the stream.
// Unless an error occurs all bytes will be consumed.
func (d *compressor) write(b []byte) (n int, err error) {
if d.err != nil {
return 0, d.err
}
n = len(b)
for len(b) > 0 {
if d.windowEnd == len(d.window) || d.sync {
d.step(d)
}
b = b[d.fill(d, b):]
if d.err != nil {
return 0, d.err
}
}
return n, d.err
}
func (d *compressor) syncFlush() error {
d.sync = true
if d.err != nil {
return d.err
}
d.step(d)
if d.err == nil {
d.w.writeStoredHeader(0, false)
d.w.flush()
d.err = d.w.err
}
d.sync = false
return d.err
}
func (d *compressor) init(w io.Writer, level int) (err error) {
d.w = newHuffmanBitWriter(w)
switch {
case level == NoCompression:
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).store
case level == ConstantCompression:
d.w.logNewTablePenalty = 10
d.window = make([]byte, 32<<10)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeHuff
case level == DefaultCompression:
level = 5
fallthrough
case level >= 1 && level <= 6:
d.w.logNewTablePenalty = 7
d.fast = newFastEnc(level)
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeFast
case 7 <= level && level <= 9:
d.w.logNewTablePenalty = 8
d.state = &advancedState{}
d.compressionLevel = levels[level]
d.initDeflate()
d.fill = (*compressor).fillDeflate
d.step = (*compressor).deflateLazy
default:
return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
}
d.level = level
return nil
}
// reset the state of the compressor.
func (d *compressor) reset(w io.Writer) {
d.w.reset(w)
d.sync = false
d.err = nil
// We only need to reset a few things for Snappy.
if d.fast != nil {
d.fast.Reset()
d.windowEnd = 0
d.tokens.Reset()
return
}
switch d.compressionLevel.chain {
case 0:
// level was NoCompression or ConstantCompresssion.
d.windowEnd = 0
default:
s := d.state
s.chainHead = -1
for i := range s.hashHead {
s.hashHead[i] = 0
}
for i := range s.hashPrev {
s.hashPrev[i] = 0
}
s.hashOffset = 1
s.index, d.windowEnd = 0, 0
d.blockStart, d.byteAvailable = 0, false
d.tokens.Reset()
s.length = minMatchLength - 1
s.offset = 0
s.ii = 0
s.maxInsertIndex = 0
}
}
func (d *compressor) close() error {
if d.err != nil {
return d.err
}
d.sync = true
d.step(d)
if d.err != nil {
return d.err
}
if d.w.writeStoredHeader(0, true); d.w.err != nil {
return d.w.err
}
d.w.flush()
d.w.reset(nil)
return d.w.err
}
// NewWriter returns a new Writer compressing data at the given level.
// Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
// higher levels typically run slower but compress more.
// Level 0 (NoCompression) does not attempt any compression; it only adds the
// necessary DEFLATE framing.
// Level -1 (DefaultCompression) uses the default compression level.
// Level -2 (ConstantCompression) will use Huffman compression only, giving
// a very fast compression for all types of input, but sacrificing considerable
// compression efficiency.
//
// If level is in the range [-2, 9] then the error returned will be nil.
// Otherwise the error returned will be non-nil.
func NewWriter(w io.Writer, level int) (*Writer, error) {
var dw Writer
if err := dw.d.init(w, level); err != nil {
return nil, err
}
return &dw, nil
}
// NewWriterDict is like NewWriter but initializes the new
// Writer with a preset dictionary. The returned Writer behaves
// as if the dictionary had been written to it without producing
// any compressed output. The compressed data written to w
// can only be decompressed by a Reader initialized with the
// same dictionary.
func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
zw, err := NewWriter(w, level)
if err != nil {
return nil, err
}
zw.d.fillWindow(dict)
zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
return zw, err
}
// A Writer takes data written to it and writes the compressed
// form of that data to an underlying writer (see NewWriter).
type Writer struct {
d compressor
dict []byte
}
// Write writes data to w, which will eventually write the
// compressed form of data to its underlying writer.
func (w *Writer) Write(data []byte) (n int, err error) {
return w.d.write(data)
}
// Flush flushes any pending data to the underlying writer.
// It is useful mainly in compressed network protocols, to ensure that
// a remote reader has enough data to reconstruct a packet.
// Flush does not return until the data has been written.
// Calling Flush when there is no pending data still causes the Writer
// to emit a sync marker of at least 4 bytes.
// If the underlying writer returns an error, Flush returns that error.
//
// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
func (w *Writer) Flush() error {
// For more about flushing:
// http://www.bolet.org/~pornin/deflate-flush.html
return w.d.syncFlush()
}
// Close flushes and closes the writer.
func (w *Writer) Close() error {
return w.d.close()
}
// Reset discards the writer's state and makes it equivalent to
// the result of NewWriter or NewWriterDict called with dst
// and w's level and dictionary.
func (w *Writer) Reset(dst io.Writer) {
if len(w.dict) > 0 {
// w was created with NewWriterDict
w.d.reset(dst)
if dst != nil {
w.d.fillWindow(w.dict)
}
} else {
// w was created with NewWriter
w.d.reset(dst)
}
}
// ResetDict discards the writer's state and makes it equivalent to
// the result of NewWriter or NewWriterDict called with dst
// and w's level, but sets a specific dictionary.
func (w *Writer) ResetDict(dst io.Writer, dict []byte) {
w.dict = dict
w.d.reset(dst)
w.d.fillWindow(w.dict)
}

View File

@ -0,0 +1,184 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
// dictDecoder implements the LZ77 sliding dictionary as used in decompression.
// LZ77 decompresses data through sequences of two forms of commands:
//
// * Literal insertions: Runs of one or more symbols are inserted into the data
// stream as is. This is accomplished through the writeByte method for a
// single symbol, or combinations of writeSlice/writeMark for multiple symbols.
// Any valid stream must start with a literal insertion if no preset dictionary
// is used.
//
// * Backward copies: Runs of one or more symbols are copied from previously
// emitted data. Backward copies come as the tuple (dist, length) where dist
// determines how far back in the stream to copy from and length determines how
// many bytes to copy. Note that it is valid for the length to be greater than
// the distance. Since LZ77 uses forward copies, that situation is used to
// perform a form of run-length encoding on repeated runs of symbols.
// The writeCopy and tryWriteCopy are used to implement this command.
//
// For performance reasons, this implementation performs little to no sanity
// checks about the arguments. As such, the invariants documented for each
// method call must be respected.
type dictDecoder struct {
hist []byte // Sliding window history
// Invariant: 0 <= rdPos <= wrPos <= len(hist)
wrPos int // Current output position in buffer
rdPos int // Have emitted hist[:rdPos] already
full bool // Has a full window length been written yet?
}
// init initializes dictDecoder to have a sliding window dictionary of the given
// size. If a preset dict is provided, it will initialize the dictionary with
// the contents of dict.
func (dd *dictDecoder) init(size int, dict []byte) {
*dd = dictDecoder{hist: dd.hist}
if cap(dd.hist) < size {
dd.hist = make([]byte, size)
}
dd.hist = dd.hist[:size]
if len(dict) > len(dd.hist) {
dict = dict[len(dict)-len(dd.hist):]
}
dd.wrPos = copy(dd.hist, dict)
if dd.wrPos == len(dd.hist) {
dd.wrPos = 0
dd.full = true
}
dd.rdPos = dd.wrPos
}
// histSize reports the total amount of historical data in the dictionary.
func (dd *dictDecoder) histSize() int {
if dd.full {
return len(dd.hist)
}
return dd.wrPos
}
// availRead reports the number of bytes that can be flushed by readFlush.
func (dd *dictDecoder) availRead() int {
return dd.wrPos - dd.rdPos
}
// availWrite reports the available amount of output buffer space.
func (dd *dictDecoder) availWrite() int {
return len(dd.hist) - dd.wrPos
}
// writeSlice returns a slice of the available buffer to write data to.
//
// This invariant will be kept: len(s) <= availWrite()
func (dd *dictDecoder) writeSlice() []byte {
return dd.hist[dd.wrPos:]
}
// writeMark advances the writer pointer by cnt.
//
// This invariant must be kept: 0 <= cnt <= availWrite()
func (dd *dictDecoder) writeMark(cnt int) {
dd.wrPos += cnt
}
// writeByte writes a single byte to the dictionary.
//
// This invariant must be kept: 0 < availWrite()
func (dd *dictDecoder) writeByte(c byte) {
dd.hist[dd.wrPos] = c
dd.wrPos++
}
// writeCopy copies a string at a given (dist, length) to the output.
// This returns the number of bytes copied and may be less than the requested
// length if the available space in the output buffer is too small.
//
// This invariant must be kept: 0 < dist <= histSize()
func (dd *dictDecoder) writeCopy(dist, length int) int {
dstBase := dd.wrPos
dstPos := dstBase
srcPos := dstPos - dist
endPos := dstPos + length
if endPos > len(dd.hist) {
endPos = len(dd.hist)
}
// Copy non-overlapping section after destination position.
//
// This section is non-overlapping in that the copy length for this section
// is always less than or equal to the backwards distance. This can occur
// if a distance refers to data that wraps-around in the buffer.
// Thus, a backwards copy is performed here; that is, the exact bytes in
// the source prior to the copy is placed in the destination.
if srcPos < 0 {
srcPos += len(dd.hist)
dstPos += copy(dd.hist[dstPos:endPos], dd.hist[srcPos:])
srcPos = 0
}
// Copy possibly overlapping section before destination position.
//
// This section can overlap if the copy length for this section is larger
// than the backwards distance. This is allowed by LZ77 so that repeated
// strings can be succinctly represented using (dist, length) pairs.
// Thus, a forwards copy is performed here; that is, the bytes copied is
// possibly dependent on the resulting bytes in the destination as the copy
// progresses along. This is functionally equivalent to the following:
//
// for i := 0; i < endPos-dstPos; i++ {
// dd.hist[dstPos+i] = dd.hist[srcPos+i]
// }
// dstPos = endPos
//
for dstPos < endPos {
dstPos += copy(dd.hist[dstPos:endPos], dd.hist[srcPos:dstPos])
}
dd.wrPos = dstPos
return dstPos - dstBase
}
// tryWriteCopy tries to copy a string at a given (distance, length) to the
// output. This specialized version is optimized for short distances.
//
// This method is designed to be inlined for performance reasons.
//
// This invariant must be kept: 0 < dist <= histSize()
func (dd *dictDecoder) tryWriteCopy(dist, length int) int {
dstPos := dd.wrPos
endPos := dstPos + length
if dstPos < dist || endPos > len(dd.hist) {
return 0
}
dstBase := dstPos
srcPos := dstPos - dist
// Copy possibly overlapping section before destination position.
loop:
dstPos += copy(dd.hist[dstPos:endPos], dd.hist[srcPos:dstPos])
if dstPos < endPos {
goto loop // Avoid for-loop so that this function can be inlined
}
dd.wrPos = dstPos
return dstPos - dstBase
}
// readFlush returns a slice of the historical buffer that is ready to be
// emitted to the user. The data returned by readFlush must be fully consumed
// before calling any other dictDecoder methods.
func (dd *dictDecoder) readFlush() []byte {
toRead := dd.hist[dd.rdPos:dd.wrPos]
dd.rdPos = dd.wrPos
if dd.wrPos == len(dd.hist) {
dd.wrPos, dd.rdPos = 0, 0
dd.full = true
}
return toRead
}

View File

@ -0,0 +1,233 @@
// Copyright 2011 The Snappy-Go Authors. All rights reserved.
// Modified for deflate by Klaus Post (c) 2015.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"encoding/binary"
"fmt"
"math/bits"
)
type fastEnc interface {
Encode(dst *tokens, src []byte)
Reset()
}
func newFastEnc(level int) fastEnc {
switch level {
case 1:
return &fastEncL1{fastGen: fastGen{cur: maxStoreBlockSize}}
case 2:
return &fastEncL2{fastGen: fastGen{cur: maxStoreBlockSize}}
case 3:
return &fastEncL3{fastGen: fastGen{cur: maxStoreBlockSize}}
case 4:
return &fastEncL4{fastGen: fastGen{cur: maxStoreBlockSize}}
case 5:
return &fastEncL5{fastGen: fastGen{cur: maxStoreBlockSize}}
case 6:
return &fastEncL6{fastGen: fastGen{cur: maxStoreBlockSize}}
default:
panic("invalid level specified")
}
}
const (
tableBits = 15 // Bits used in the table
tableSize = 1 << tableBits // Size of the table
tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
baseMatchOffset = 1 // The smallest match offset
baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5
maxMatchOffset = 1 << 15 // The largest match offset
bTableBits = 17 // Bits used in the big tables
bTableSize = 1 << bTableBits // Size of the table
allocHistory = maxStoreBlockSize * 5 // Size to preallocate for history.
bufferReset = (1 << 31) - allocHistory - maxStoreBlockSize - 1 // Reset the buffer offset when reaching this.
)
const (
prime3bytes = 506832829
prime4bytes = 2654435761
prime5bytes = 889523592379
prime6bytes = 227718039650203
prime7bytes = 58295818150454627
prime8bytes = 0xcf1bbcdcb7a56463
)
func load32(b []byte, i int) uint32 {
// Help the compiler eliminate bounds checks on the read so it can be done in a single read.
b = b[i:]
b = b[:4]
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func load64(b []byte, i int) uint64 {
return binary.LittleEndian.Uint64(b[i:])
}
func load3232(b []byte, i int32) uint32 {
return binary.LittleEndian.Uint32(b[i:])
}
func load6432(b []byte, i int32) uint64 {
return binary.LittleEndian.Uint64(b[i:])
}
func hash(u uint32) uint32 {
return (u * 0x1e35a7bd) >> tableShift
}
type tableEntry struct {
offset int32
}
// fastGen maintains the table for matches,
// and the previous byte block for level 2.
// This is the generic implementation.
type fastGen struct {
hist []byte
cur int32
}
func (e *fastGen) addBlock(src []byte) int32 {
// check if we have space already
if len(e.hist)+len(src) > cap(e.hist) {
if cap(e.hist) == 0 {
e.hist = make([]byte, 0, allocHistory)
} else {
if cap(e.hist) < maxMatchOffset*2 {
panic("unexpected buffer size")
}
// Move down
offset := int32(len(e.hist)) - maxMatchOffset
copy(e.hist[0:maxMatchOffset], e.hist[offset:])
e.cur += offset
e.hist = e.hist[:maxMatchOffset]
}
}
s := int32(len(e.hist))
e.hist = append(e.hist, src...)
return s
}
// hash4 returns the hash of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <32.
func hash4u(u uint32, h uint8) uint32 {
return (u * prime4bytes) >> (32 - h)
}
type tableEntryPrev struct {
Cur tableEntry
Prev tableEntry
}
// hash4x64 returns the hash of the lowest 4 bytes of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <32.
func hash4x64(u uint64, h uint8) uint32 {
return (uint32(u) * prime4bytes) >> ((32 - h) & reg8SizeMask32)
}
// hash7 returns the hash of the lowest 7 bytes of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <64.
func hash7(u uint64, h uint8) uint32 {
return uint32(((u << (64 - 56)) * prime7bytes) >> ((64 - h) & reg8SizeMask64))
}
// hash8 returns the hash of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <64.
func hash8(u uint64, h uint8) uint32 {
return uint32((u * prime8bytes) >> ((64 - h) & reg8SizeMask64))
}
// hash6 returns the hash of the lowest 6 bytes of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <64.
func hash6(u uint64, h uint8) uint32 {
return uint32(((u << (64 - 48)) * prime6bytes) >> ((64 - h) & reg8SizeMask64))
}
// matchlen will return the match length between offsets and t in src.
// The maximum length returned is maxMatchLength - 4.
// It is assumed that s > t, that t >=0 and s < len(src).
func (e *fastGen) matchlen(s, t int32, src []byte) int32 {
if debugDecode {
if t >= s {
panic(fmt.Sprint("t >=s:", t, s))
}
if int(s) >= len(src) {
panic(fmt.Sprint("s >= len(src):", s, len(src)))
}
if t < 0 {
panic(fmt.Sprint("t < 0:", t))
}
if s-t > maxMatchOffset {
panic(fmt.Sprint(s, "-", t, "(", s-t, ") > maxMatchLength (", maxMatchOffset, ")"))
}
}
s1 := int(s) + maxMatchLength - 4
if s1 > len(src) {
s1 = len(src)
}
// Extend the match to be as long as possible.
return int32(matchLen(src[s:s1], src[t:]))
}
// matchlenLong will return the match length between offsets and t in src.
// It is assumed that s > t, that t >=0 and s < len(src).
func (e *fastGen) matchlenLong(s, t int32, src []byte) int32 {
if debugDeflate {
if t >= s {
panic(fmt.Sprint("t >=s:", t, s))
}
if int(s) >= len(src) {
panic(fmt.Sprint("s >= len(src):", s, len(src)))
}
if t < 0 {
panic(fmt.Sprint("t < 0:", t))
}
if s-t > maxMatchOffset {
panic(fmt.Sprint(s, "-", t, "(", s-t, ") > maxMatchLength (", maxMatchOffset, ")"))
}
}
// Extend the match to be as long as possible.
return int32(matchLen(src[s:], src[t:]))
}
// Reset the encoding table.
func (e *fastGen) Reset() {
if cap(e.hist) < allocHistory {
e.hist = make([]byte, 0, allocHistory)
}
// We offset current position so everything will be out of reach.
// If we are above the buffer reset it will be cleared anyway since len(hist) == 0.
if e.cur <= bufferReset {
e.cur += maxMatchOffset + int32(len(e.hist))
}
e.hist = e.hist[:0]
}
// matchLen returns the maximum length.
// 'a' must be the shortest of the two.
func matchLen(a, b []byte) int {
var checked int
for len(a) >= 8 {
if diff := binary.LittleEndian.Uint64(a) ^ binary.LittleEndian.Uint64(b); diff != 0 {
return checked + (bits.TrailingZeros64(diff) >> 3)
}
checked += 8
a = a[8:]
b = b[8:]
}
b = b[:len(a)]
for i := range a {
if a[i] != b[i] {
return i + checked
}
}
return len(a) + checked
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,412 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"math"
"math/bits"
)
const (
maxBitsLimit = 16
// number of valid literals
literalCount = 286
)
// hcode is a huffman code with a bit code and bit length.
type hcode uint32
func (h hcode) len() uint8 {
return uint8(h)
}
func (h hcode) code64() uint64 {
return uint64(h >> 8)
}
func (h hcode) zero() bool {
return h == 0
}
type huffmanEncoder struct {
codes []hcode
bitCount [17]int32
// Allocate a reusable buffer with the longest possible frequency table.
// Possible lengths are codegenCodeCount, offsetCodeCount and literalCount.
// The largest of these is literalCount, so we allocate for that case.
freqcache [literalCount + 1]literalNode
}
type literalNode struct {
literal uint16
freq uint16
}
// A levelInfo describes the state of the constructed tree for a given depth.
type levelInfo struct {
// Our level. for better printing
level int32
// The frequency of the last node at this level
lastFreq int32
// The frequency of the next character to add to this level
nextCharFreq int32
// The frequency of the next pair (from level below) to add to this level.
// Only valid if the "needed" value of the next lower level is 0.
nextPairFreq int32
// The number of chains remaining to generate for this level before moving
// up to the next level
needed int32
}
// set sets the code and length of an hcode.
func (h *hcode) set(code uint16, length uint8) {
*h = hcode(length) | (hcode(code) << 8)
}
func newhcode(code uint16, length uint8) hcode {
return hcode(length) | (hcode(code) << 8)
}
func reverseBits(number uint16, bitLength byte) uint16 {
return bits.Reverse16(number << ((16 - bitLength) & 15))
}
func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxUint16} }
func newHuffmanEncoder(size int) *huffmanEncoder {
// Make capacity to next power of two.
c := uint(bits.Len32(uint32(size - 1)))
return &huffmanEncoder{codes: make([]hcode, size, 1<<c)}
}
// Generates a HuffmanCode corresponding to the fixed literal table
func generateFixedLiteralEncoding() *huffmanEncoder {
h := newHuffmanEncoder(literalCount)
codes := h.codes
var ch uint16
for ch = 0; ch < literalCount; ch++ {
var bits uint16
var size uint8
switch {
case ch < 144:
// size 8, 000110000 .. 10111111
bits = ch + 48
size = 8
case ch < 256:
// size 9, 110010000 .. 111111111
bits = ch + 400 - 144
size = 9
case ch < 280:
// size 7, 0000000 .. 0010111
bits = ch - 256
size = 7
default:
// size 8, 11000000 .. 11000111
bits = ch + 192 - 280
size = 8
}
codes[ch] = newhcode(reverseBits(bits, size), size)
}
return h
}
func generateFixedOffsetEncoding() *huffmanEncoder {
h := newHuffmanEncoder(30)
codes := h.codes
for ch := range codes {
codes[ch] = newhcode(reverseBits(uint16(ch), 5), 5)
}
return h
}
var fixedLiteralEncoding = generateFixedLiteralEncoding()
var fixedOffsetEncoding = generateFixedOffsetEncoding()
func (h *huffmanEncoder) bitLength(freq []uint16) int {
var total int
for i, f := range freq {
if f != 0 {
total += int(f) * int(h.codes[i].len())
}
}
return total
}
func (h *huffmanEncoder) bitLengthRaw(b []byte) int {
var total int
for _, f := range b {
total += int(h.codes[f].len())
}
return total
}
// canReuseBits returns the number of bits or math.MaxInt32 if the encoder cannot be reused.
func (h *huffmanEncoder) canReuseBits(freq []uint16) int {
var total int
for i, f := range freq {
if f != 0 {
code := h.codes[i]
if code.zero() {
return math.MaxInt32
}
total += int(f) * int(code.len())
}
}
return total
}
// Return the number of literals assigned to each bit size in the Huffman encoding
//
// This method is only called when list.length >= 3
// The cases of 0, 1, and 2 literals are handled by special case code.
//
// list An array of the literals with non-zero frequencies
// and their associated frequencies. The array is in order of increasing
// frequency, and has as its last element a special element with frequency
// MaxInt32
// maxBits The maximum number of bits that should be used to encode any literal.
// Must be less than 16.
// return An integer array in which array[i] indicates the number of literals
// that should be encoded in i bits.
func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
if maxBits >= maxBitsLimit {
panic("flate: maxBits too large")
}
n := int32(len(list))
list = list[0 : n+1]
list[n] = maxNode()
// The tree can't have greater depth than n - 1, no matter what. This
// saves a little bit of work in some small cases
if maxBits > n-1 {
maxBits = n - 1
}
// Create information about each of the levels.
// A bogus "Level 0" whose sole purpose is so that
// level1.prev.needed==0. This makes level1.nextPairFreq
// be a legitimate value that never gets chosen.
var levels [maxBitsLimit]levelInfo
// leafCounts[i] counts the number of literals at the left
// of ancestors of the rightmost node at level i.
// leafCounts[i][j] is the number of literals at the left
// of the level j ancestor.
var leafCounts [maxBitsLimit][maxBitsLimit]int32
// Descending to only have 1 bounds check.
l2f := int32(list[2].freq)
l1f := int32(list[1].freq)
l0f := int32(list[0].freq) + int32(list[1].freq)
for level := int32(1); level <= maxBits; level++ {
// For every level, the first two items are the first two characters.
// We initialize the levels as if we had already figured this out.
levels[level] = levelInfo{
level: level,
lastFreq: l1f,
nextCharFreq: l2f,
nextPairFreq: l0f,
}
leafCounts[level][level] = 2
if level == 1 {
levels[level].nextPairFreq = math.MaxInt32
}
}
// We need a total of 2*n - 2 items at top level and have already generated 2.
levels[maxBits].needed = 2*n - 4
level := uint32(maxBits)
for level < 16 {
l := &levels[level]
if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
// We've run out of both leafs and pairs.
// End all calculations for this level.
// To make sure we never come back to this level or any lower level,
// set nextPairFreq impossibly large.
l.needed = 0
levels[level+1].nextPairFreq = math.MaxInt32
level++
continue
}
prevFreq := l.lastFreq
if l.nextCharFreq < l.nextPairFreq {
// The next item on this row is a leaf node.
n := leafCounts[level][level] + 1
l.lastFreq = l.nextCharFreq
// Lower leafCounts are the same of the previous node.
leafCounts[level][level] = n
e := list[n]
if e.literal < math.MaxUint16 {
l.nextCharFreq = int32(e.freq)
} else {
l.nextCharFreq = math.MaxInt32
}
} else {
// The next item on this row is a pair from the previous row.
// nextPairFreq isn't valid until we generate two
// more values in the level below
l.lastFreq = l.nextPairFreq
// Take leaf counts from the lower level, except counts[level] remains the same.
if true {
save := leafCounts[level][level]
leafCounts[level] = leafCounts[level-1]
leafCounts[level][level] = save
} else {
copy(leafCounts[level][:level], leafCounts[level-1][:level])
}
levels[l.level-1].needed = 2
}
if l.needed--; l.needed == 0 {
// We've done everything we need to do for this level.
// Continue calculating one level up. Fill in nextPairFreq
// of that level with the sum of the two nodes we've just calculated on
// this level.
if l.level == maxBits {
// All done!
break
}
levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
level++
} else {
// If we stole from below, move down temporarily to replenish it.
for levels[level-1].needed > 0 {
level--
}
}
}
// Somethings is wrong if at the end, the top level is null or hasn't used
// all of the leaves.
if leafCounts[maxBits][maxBits] != n {
panic("leafCounts[maxBits][maxBits] != n")
}
bitCount := h.bitCount[:maxBits+1]
bits := 1
counts := &leafCounts[maxBits]
for level := maxBits; level > 0; level-- {
// chain.leafCount gives the number of literals requiring at least "bits"
// bits to encode.
bitCount[bits] = counts[level] - counts[level-1]
bits++
}
return bitCount
}
// Look at the leaves and assign them a bit count and an encoding as specified
// in RFC 1951 3.2.2
func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
code := uint16(0)
for n, bits := range bitCount {
code <<= 1
if n == 0 || bits == 0 {
continue
}
// The literals list[len(list)-bits] .. list[len(list)-bits]
// are encoded using "bits" bits, and get the values
// code, code + 1, .... The code values are
// assigned in literal order (not frequency order).
chunk := list[len(list)-int(bits):]
sortByLiteral(chunk)
for _, node := range chunk {
h.codes[node.literal] = newhcode(reverseBits(code, uint8(n)), uint8(n))
code++
}
list = list[0 : len(list)-int(bits)]
}
}
// Update this Huffman Code object to be the minimum code for the specified frequency count.
//
// freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
// maxBits The maximum number of bits to use for any literal.
func (h *huffmanEncoder) generate(freq []uint16, maxBits int32) {
list := h.freqcache[:len(freq)+1]
codes := h.codes[:len(freq)]
// Number of non-zero literals
count := 0
// Set list to be the set of all non-zero literals and their frequencies
for i, f := range freq {
if f != 0 {
list[count] = literalNode{uint16(i), f}
count++
} else {
codes[i] = 0
}
}
list[count] = literalNode{}
list = list[:count]
if count <= 2 {
// Handle the small cases here, because they are awkward for the general case code. With
// two or fewer literals, everything has bit length 1.
for i, node := range list {
// "list" is in order of increasing literal value.
h.codes[node.literal].set(uint16(i), 1)
}
return
}
sortByFreq(list)
// Get the number of literals for each bit count
bitCount := h.bitCounts(list, maxBits)
// And do the assignment
h.assignEncodingAndSize(bitCount, list)
}
// atLeastOne clamps the result between 1 and 15.
func atLeastOne(v float32) float32 {
if v < 1 {
return 1
}
if v > 15 {
return 15
}
return v
}
func histogram(b []byte, h []uint16) {
if true && len(b) >= 8<<10 {
// Split for bigger inputs
histogramSplit(b, h)
} else {
h = h[:256]
for _, t := range b {
h[t]++
}
}
}
func histogramSplit(b []byte, h []uint16) {
// Tested, and slightly faster than 2-way.
// Writing to separate arrays and combining is also slightly slower.
h = h[:256]
for len(b)&3 != 0 {
h[b[0]]++
b = b[1:]
}
n := len(b) / 4
x, y, z, w := b[:n], b[n:], b[n+n:], b[n+n+n:]
y, z, w = y[:len(x)], z[:len(x)], w[:len(x)]
for i, t := range x {
v0 := &h[t]
v1 := &h[y[i]]
v3 := &h[w[i]]
v2 := &h[z[i]]
*v0++
*v1++
*v2++
*v3++
}
}

View File

@ -0,0 +1,178 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
// Sort sorts data.
// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
// data.Less and data.Swap. The sort is not guaranteed to be stable.
func sortByFreq(data []literalNode) {
n := len(data)
quickSortByFreq(data, 0, n, maxDepth(n))
}
func quickSortByFreq(data []literalNode, a, b, maxDepth int) {
for b-a > 12 { // Use ShellSort for slices <= 12 elements
if maxDepth == 0 {
heapSort(data, a, b)
return
}
maxDepth--
mlo, mhi := doPivotByFreq(data, a, b)
// Avoiding recursion on the larger subproblem guarantees
// a stack depth of at most lg(b-a).
if mlo-a < b-mhi {
quickSortByFreq(data, a, mlo, maxDepth)
a = mhi // i.e., quickSortByFreq(data, mhi, b)
} else {
quickSortByFreq(data, mhi, b, maxDepth)
b = mlo // i.e., quickSortByFreq(data, a, mlo)
}
}
if b-a > 1 {
// Do ShellSort pass with gap 6
// It could be written in this simplified form cause b-a <= 12
for i := a + 6; i < b; i++ {
if data[i].freq == data[i-6].freq && data[i].literal < data[i-6].literal || data[i].freq < data[i-6].freq {
data[i], data[i-6] = data[i-6], data[i]
}
}
insertionSortByFreq(data, a, b)
}
}
// siftDownByFreq implements the heap property on data[lo, hi).
// first is an offset into the array where the root of the heap lies.
func siftDownByFreq(data []literalNode, lo, hi, first int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && (data[first+child].freq == data[first+child+1].freq && data[first+child].literal < data[first+child+1].literal || data[first+child].freq < data[first+child+1].freq) {
child++
}
if data[first+root].freq == data[first+child].freq && data[first+root].literal > data[first+child].literal || data[first+root].freq > data[first+child].freq {
return
}
data[first+root], data[first+child] = data[first+child], data[first+root]
root = child
}
}
func doPivotByFreq(data []literalNode, lo, hi int) (midlo, midhi int) {
m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow.
if hi-lo > 40 {
// Tukey's ``Ninther,'' median of three medians of three.
s := (hi - lo) / 8
medianOfThreeSortByFreq(data, lo, lo+s, lo+2*s)
medianOfThreeSortByFreq(data, m, m-s, m+s)
medianOfThreeSortByFreq(data, hi-1, hi-1-s, hi-1-2*s)
}
medianOfThreeSortByFreq(data, lo, m, hi-1)
// Invariants are:
// data[lo] = pivot (set up by ChoosePivot)
// data[lo < i < a] < pivot
// data[a <= i < b] <= pivot
// data[b <= i < c] unexamined
// data[c <= i < hi-1] > pivot
// data[hi-1] >= pivot
pivot := lo
a, c := lo+1, hi-1
for ; a < c && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ {
}
b := a
for {
for ; b < c && (data[pivot].freq == data[b].freq && data[pivot].literal > data[b].literal || data[pivot].freq > data[b].freq); b++ { // data[b] <= pivot
}
for ; b < c && (data[pivot].freq == data[c-1].freq && data[pivot].literal < data[c-1].literal || data[pivot].freq < data[c-1].freq); c-- { // data[c-1] > pivot
}
if b >= c {
break
}
// data[b] > pivot; data[c-1] <= pivot
data[b], data[c-1] = data[c-1], data[b]
b++
c--
}
// If hi-c<3 then there are duplicates (by property of median of nine).
// Let's be a bit more conservative, and set border to 5.
protect := hi-c < 5
if !protect && hi-c < (hi-lo)/4 {
// Lets test some points for equality to pivot
dups := 0
if data[pivot].freq == data[hi-1].freq && data[pivot].literal > data[hi-1].literal || data[pivot].freq > data[hi-1].freq { // data[hi-1] = pivot
data[c], data[hi-1] = data[hi-1], data[c]
c++
dups++
}
if data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq { // data[b-1] = pivot
b--
dups++
}
// m-lo = (hi-lo)/2 > 6
// b-lo > (hi-lo)*3/4-1 > 8
// ==> m < b ==> data[m] <= pivot
if data[m].freq == data[pivot].freq && data[m].literal > data[pivot].literal || data[m].freq > data[pivot].freq { // data[m] = pivot
data[m], data[b-1] = data[b-1], data[m]
b--
dups++
}
// if at least 2 points are equal to pivot, assume skewed distribution
protect = dups > 1
}
if protect {
// Protect against a lot of duplicates
// Add invariant:
// data[a <= i < b] unexamined
// data[b <= i < c] = pivot
for {
for ; a < b && (data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq); b-- { // data[b] == pivot
}
for ; a < b && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ { // data[a] < pivot
}
if a >= b {
break
}
// data[a] == pivot; data[b-1] < pivot
data[a], data[b-1] = data[b-1], data[a]
a++
b--
}
}
// Swap pivot into middle
data[pivot], data[b-1] = data[b-1], data[pivot]
return b - 1, c
}
// Insertion sort
func insertionSortByFreq(data []literalNode, a, b int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && (data[j].freq == data[j-1].freq && data[j].literal < data[j-1].literal || data[j].freq < data[j-1].freq); j-- {
data[j], data[j-1] = data[j-1], data[j]
}
}
}
// quickSortByFreq, loosely following Bentley and McIlroy,
// ``Engineering a Sort Function,'' SP&E November 1993.
// medianOfThreeSortByFreq moves the median of the three values data[m0], data[m1], data[m2] into data[m1].
func medianOfThreeSortByFreq(data []literalNode, m1, m0, m2 int) {
// sort 3 elements
if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq {
data[m1], data[m0] = data[m0], data[m1]
}
// data[m0] <= data[m1]
if data[m2].freq == data[m1].freq && data[m2].literal < data[m1].literal || data[m2].freq < data[m1].freq {
data[m2], data[m1] = data[m1], data[m2]
// data[m0] <= data[m2] && data[m1] < data[m2]
if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq {
data[m1], data[m0] = data[m0], data[m1]
}
}
// now data[m0] <= data[m1] <= data[m2]
}

View File

@ -0,0 +1,201 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
// Sort sorts data.
// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
// data.Less and data.Swap. The sort is not guaranteed to be stable.
func sortByLiteral(data []literalNode) {
n := len(data)
quickSort(data, 0, n, maxDepth(n))
}
func quickSort(data []literalNode, a, b, maxDepth int) {
for b-a > 12 { // Use ShellSort for slices <= 12 elements
if maxDepth == 0 {
heapSort(data, a, b)
return
}
maxDepth--
mlo, mhi := doPivot(data, a, b)
// Avoiding recursion on the larger subproblem guarantees
// a stack depth of at most lg(b-a).
if mlo-a < b-mhi {
quickSort(data, a, mlo, maxDepth)
a = mhi // i.e., quickSort(data, mhi, b)
} else {
quickSort(data, mhi, b, maxDepth)
b = mlo // i.e., quickSort(data, a, mlo)
}
}
if b-a > 1 {
// Do ShellSort pass with gap 6
// It could be written in this simplified form cause b-a <= 12
for i := a + 6; i < b; i++ {
if data[i].literal < data[i-6].literal {
data[i], data[i-6] = data[i-6], data[i]
}
}
insertionSort(data, a, b)
}
}
func heapSort(data []literalNode, a, b int) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
siftDown(data, i, hi, first)
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
data[first], data[first+i] = data[first+i], data[first]
siftDown(data, lo, i, first)
}
}
// siftDown implements the heap property on data[lo, hi).
// first is an offset into the array where the root of the heap lies.
func siftDown(data []literalNode, lo, hi, first int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && data[first+child].literal < data[first+child+1].literal {
child++
}
if data[first+root].literal > data[first+child].literal {
return
}
data[first+root], data[first+child] = data[first+child], data[first+root]
root = child
}
}
func doPivot(data []literalNode, lo, hi int) (midlo, midhi int) {
m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow.
if hi-lo > 40 {
// Tukey's ``Ninther,'' median of three medians of three.
s := (hi - lo) / 8
medianOfThree(data, lo, lo+s, lo+2*s)
medianOfThree(data, m, m-s, m+s)
medianOfThree(data, hi-1, hi-1-s, hi-1-2*s)
}
medianOfThree(data, lo, m, hi-1)
// Invariants are:
// data[lo] = pivot (set up by ChoosePivot)
// data[lo < i < a] < pivot
// data[a <= i < b] <= pivot
// data[b <= i < c] unexamined
// data[c <= i < hi-1] > pivot
// data[hi-1] >= pivot
pivot := lo
a, c := lo+1, hi-1
for ; a < c && data[a].literal < data[pivot].literal; a++ {
}
b := a
for {
for ; b < c && data[pivot].literal > data[b].literal; b++ { // data[b] <= pivot
}
for ; b < c && data[pivot].literal < data[c-1].literal; c-- { // data[c-1] > pivot
}
if b >= c {
break
}
// data[b] > pivot; data[c-1] <= pivot
data[b], data[c-1] = data[c-1], data[b]
b++
c--
}
// If hi-c<3 then there are duplicates (by property of median of nine).
// Let's be a bit more conservative, and set border to 5.
protect := hi-c < 5
if !protect && hi-c < (hi-lo)/4 {
// Lets test some points for equality to pivot
dups := 0
if data[pivot].literal > data[hi-1].literal { // data[hi-1] = pivot
data[c], data[hi-1] = data[hi-1], data[c]
c++
dups++
}
if data[b-1].literal > data[pivot].literal { // data[b-1] = pivot
b--
dups++
}
// m-lo = (hi-lo)/2 > 6
// b-lo > (hi-lo)*3/4-1 > 8
// ==> m < b ==> data[m] <= pivot
if data[m].literal > data[pivot].literal { // data[m] = pivot
data[m], data[b-1] = data[b-1], data[m]
b--
dups++
}
// if at least 2 points are equal to pivot, assume skewed distribution
protect = dups > 1
}
if protect {
// Protect against a lot of duplicates
// Add invariant:
// data[a <= i < b] unexamined
// data[b <= i < c] = pivot
for {
for ; a < b && data[b-1].literal > data[pivot].literal; b-- { // data[b] == pivot
}
for ; a < b && data[a].literal < data[pivot].literal; a++ { // data[a] < pivot
}
if a >= b {
break
}
// data[a] == pivot; data[b-1] < pivot
data[a], data[b-1] = data[b-1], data[a]
a++
b--
}
}
// Swap pivot into middle
data[pivot], data[b-1] = data[b-1], data[pivot]
return b - 1, c
}
// Insertion sort
func insertionSort(data []literalNode, a, b int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && data[j].literal < data[j-1].literal; j-- {
data[j], data[j-1] = data[j-1], data[j]
}
}
}
// maxDepth returns a threshold at which quicksort should switch
// to heapsort. It returns 2*ceil(lg(n+1)).
func maxDepth(n int) int {
var depth int
for i := n; i > 0; i >>= 1 {
depth++
}
return depth * 2
}
// medianOfThree moves the median of the three values data[m0], data[m1], data[m2] into data[m1].
func medianOfThree(data []literalNode, m1, m0, m2 int) {
// sort 3 elements
if data[m1].literal < data[m0].literal {
data[m1], data[m0] = data[m0], data[m1]
}
// data[m0] <= data[m1]
if data[m2].literal < data[m1].literal {
data[m2], data[m1] = data[m1], data[m2]
// data[m0] <= data[m2] && data[m1] < data[m2]
if data[m1].literal < data[m0].literal {
data[m1], data[m0] = data[m0], data[m1]
}
}
// now data[m0] <= data[m1] <= data[m2]
}

793
vendor/github.com/klauspost/compress/flate/inflate.go generated vendored Normal file
View File

@ -0,0 +1,793 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package flate implements the DEFLATE compressed data format, described in
// RFC 1951. The gzip and zlib packages implement access to DEFLATE-based file
// formats.
package flate
import (
"bufio"
"compress/flate"
"fmt"
"io"
"math/bits"
"sync"
)
const (
maxCodeLen = 16 // max length of Huffman code
maxCodeLenMask = 15 // mask for max length of Huffman code
// The next three numbers come from the RFC section 3.2.7, with the
// additional proviso in section 3.2.5 which implies that distance codes
// 30 and 31 should never occur in compressed data.
maxNumLit = 286
maxNumDist = 30
numCodes = 19 // number of codes in Huffman meta-code
debugDecode = false
)
// Value of length - 3 and extra bits.
type lengthExtra struct {
length, extra uint8
}
var decCodeToLen = [32]lengthExtra{{length: 0x0, extra: 0x0}, {length: 0x1, extra: 0x0}, {length: 0x2, extra: 0x0}, {length: 0x3, extra: 0x0}, {length: 0x4, extra: 0x0}, {length: 0x5, extra: 0x0}, {length: 0x6, extra: 0x0}, {length: 0x7, extra: 0x0}, {length: 0x8, extra: 0x1}, {length: 0xa, extra: 0x1}, {length: 0xc, extra: 0x1}, {length: 0xe, extra: 0x1}, {length: 0x10, extra: 0x2}, {length: 0x14, extra: 0x2}, {length: 0x18, extra: 0x2}, {length: 0x1c, extra: 0x2}, {length: 0x20, extra: 0x3}, {length: 0x28, extra: 0x3}, {length: 0x30, extra: 0x3}, {length: 0x38, extra: 0x3}, {length: 0x40, extra: 0x4}, {length: 0x50, extra: 0x4}, {length: 0x60, extra: 0x4}, {length: 0x70, extra: 0x4}, {length: 0x80, extra: 0x5}, {length: 0xa0, extra: 0x5}, {length: 0xc0, extra: 0x5}, {length: 0xe0, extra: 0x5}, {length: 0xff, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}}
var bitMask32 = [32]uint32{
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF,
0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF,
0x1ffff, 0x3ffff, 0x7FFFF, 0xfFFFF, 0x1fFFFF, 0x3fFFFF, 0x7fFFFF, 0xffFFFF,
0x1ffFFFF, 0x3ffFFFF, 0x7ffFFFF, 0xfffFFFF, 0x1fffFFFF, 0x3fffFFFF, 0x7fffFFFF,
} // up to 32 bits
// Initialize the fixedHuffmanDecoder only once upon first use.
var fixedOnce sync.Once
var fixedHuffmanDecoder huffmanDecoder
// A CorruptInputError reports the presence of corrupt input at a given offset.
type CorruptInputError = flate.CorruptInputError
// An InternalError reports an error in the flate code itself.
type InternalError string
func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
// A ReadError reports an error encountered while reading input.
//
// Deprecated: No longer returned.
type ReadError = flate.ReadError
// A WriteError reports an error encountered while writing output.
//
// Deprecated: No longer returned.
type WriteError = flate.WriteError
// Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
// to switch to a new underlying Reader. This permits reusing a ReadCloser
// instead of allocating a new one.
type Resetter interface {
// Reset discards any buffered data and resets the Resetter as if it was
// newly initialized with the given reader.
Reset(r io.Reader, dict []byte) error
}
// The data structure for decoding Huffman tables is based on that of
// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
// For codes smaller than the table width, there are multiple entries
// (each combination of trailing bits has the same value). For codes
// larger than the table width, the table contains a link to an overflow
// table. The width of each entry in the link table is the maximum code
// size minus the chunk width.
//
// Note that you can do a lookup in the table even without all bits
// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
// have the property that shorter codes come before longer ones, the
// bit length estimate in the result is a lower bound on the actual
// number of bits.
//
// See the following:
// http://www.gzip.org/algorithm.txt
// chunk & 15 is number of bits
// chunk >> 4 is value, including table link
const (
huffmanChunkBits = 9
huffmanNumChunks = 1 << huffmanChunkBits
huffmanCountMask = 15
huffmanValueShift = 4
)
type huffmanDecoder struct {
maxRead int // the maximum number of bits we can read and not overread
chunks *[huffmanNumChunks]uint16 // chunks as described above
links [][]uint16 // overflow links
linkMask uint32 // mask the width of the link table
}
// Initialize Huffman decoding tables from array of code lengths.
// Following this function, h is guaranteed to be initialized into a complete
// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
// degenerate case where the tree has only a single symbol with length 1. Empty
// trees are permitted.
func (h *huffmanDecoder) init(lengths []int) bool {
// Sanity enables additional runtime tests during Huffman
// table construction. It's intended to be used during
// development to supplement the currently ad-hoc unit tests.
const sanity = false
if h.chunks == nil {
h.chunks = &[huffmanNumChunks]uint16{}
}
if h.maxRead != 0 {
*h = huffmanDecoder{chunks: h.chunks, links: h.links}
}
// Count number of codes of each length,
// compute maxRead and max length.
var count [maxCodeLen]int
var min, max int
for _, n := range lengths {
if n == 0 {
continue
}
if min == 0 || n < min {
min = n
}
if n > max {
max = n
}
count[n&maxCodeLenMask]++
}
// Empty tree. The decompressor.huffSym function will fail later if the tree
// is used. Technically, an empty tree is only valid for the HDIST tree and
// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
// is guaranteed to fail since it will attempt to use the tree to decode the
// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
// guaranteed to fail later since the compressed data section must be
// composed of at least one symbol (the end-of-block marker).
if max == 0 {
return true
}
code := 0
var nextcode [maxCodeLen]int
for i := min; i <= max; i++ {
code <<= 1
nextcode[i&maxCodeLenMask] = code
code += count[i&maxCodeLenMask]
}
// Check that the coding is complete (i.e., that we've
// assigned all 2-to-the-max possible bit sequences).
// Exception: To be compatible with zlib, we also need to
// accept degenerate single-code codings. See also
// TestDegenerateHuffmanCoding.
if code != 1<<uint(max) && !(code == 1 && max == 1) {
if debugDecode {
fmt.Println("coding failed, code, max:", code, max, code == 1<<uint(max), code == 1 && max == 1, "(one should be true)")
}
return false
}
h.maxRead = min
chunks := h.chunks[:]
for i := range chunks {
chunks[i] = 0
}
if max > huffmanChunkBits {
numLinks := 1 << (uint(max) - huffmanChunkBits)
h.linkMask = uint32(numLinks - 1)
// create link tables
link := nextcode[huffmanChunkBits+1] >> 1
if cap(h.links) < huffmanNumChunks-link {
h.links = make([][]uint16, huffmanNumChunks-link)
} else {
h.links = h.links[:huffmanNumChunks-link]
}
for j := uint(link); j < huffmanNumChunks; j++ {
reverse := int(bits.Reverse16(uint16(j)))
reverse >>= uint(16 - huffmanChunkBits)
off := j - uint(link)
if sanity && h.chunks[reverse] != 0 {
panic("impossible: overwriting existing chunk")
}
h.chunks[reverse] = uint16(off<<huffmanValueShift | (huffmanChunkBits + 1))
if cap(h.links[off]) < numLinks {
h.links[off] = make([]uint16, numLinks)
} else {
links := h.links[off][:0]
h.links[off] = links[:numLinks]
}
}
} else {
h.links = h.links[:0]
}
for i, n := range lengths {
if n == 0 {
continue
}
code := nextcode[n]
nextcode[n]++
chunk := uint16(i<<huffmanValueShift | n)
reverse := int(bits.Reverse16(uint16(code)))
reverse >>= uint(16 - n)
if n <= huffmanChunkBits {
for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
// We should never need to overwrite
// an existing chunk. Also, 0 is
// never a valid chunk, because the
// lower 4 "count" bits should be
// between 1 and 15.
if sanity && h.chunks[off] != 0 {
panic("impossible: overwriting existing chunk")
}
h.chunks[off] = chunk
}
} else {
j := reverse & (huffmanNumChunks - 1)
if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
// Longer codes should have been
// associated with a link table above.
panic("impossible: not an indirect chunk")
}
value := h.chunks[j] >> huffmanValueShift
linktab := h.links[value]
reverse >>= huffmanChunkBits
for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
if sanity && linktab[off] != 0 {
panic("impossible: overwriting existing chunk")
}
linktab[off] = chunk
}
}
}
if sanity {
// Above we've sanity checked that we never overwrote
// an existing entry. Here we additionally check that
// we filled the tables completely.
for i, chunk := range h.chunks {
if chunk == 0 {
// As an exception, in the degenerate
// single-code case, we allow odd
// chunks to be missing.
if code == 1 && i%2 == 1 {
continue
}
panic("impossible: missing chunk")
}
}
for _, linktab := range h.links {
for _, chunk := range linktab {
if chunk == 0 {
panic("impossible: missing chunk")
}
}
}
}
return true
}
// The actual read interface needed by NewReader.
// If the passed in io.Reader does not also have ReadByte,
// the NewReader will introduce its own buffering.
type Reader interface {
io.Reader
io.ByteReader
}
// Decompress state.
type decompressor struct {
// Input source.
r Reader
roffset int64
// Huffman decoders for literal/length, distance.
h1, h2 huffmanDecoder
// Length arrays used to define Huffman codes.
bits *[maxNumLit + maxNumDist]int
codebits *[numCodes]int
// Output history, buffer.
dict dictDecoder
// Next step in the decompression,
// and decompression state.
step func(*decompressor)
stepState int
err error
toRead []byte
hl, hd *huffmanDecoder
copyLen int
copyDist int
// Temporary buffer (avoids repeated allocation).
buf [4]byte
// Input bits, in top of b.
b uint32
nb uint
final bool
}
func (f *decompressor) nextBlock() {
for f.nb < 1+2 {
if f.err = f.moreBits(); f.err != nil {
return
}
}
f.final = f.b&1 == 1
f.b >>= 1
typ := f.b & 3
f.b >>= 2
f.nb -= 1 + 2
switch typ {
case 0:
f.dataBlock()
if debugDecode {
fmt.Println("stored block")
}
case 1:
// compressed, fixed Huffman tables
f.hl = &fixedHuffmanDecoder
f.hd = nil
f.huffmanBlockDecoder()()
if debugDecode {
fmt.Println("predefinied huffman block")
}
case 2:
// compressed, dynamic Huffman tables
if f.err = f.readHuffman(); f.err != nil {
break
}
f.hl = &f.h1
f.hd = &f.h2
f.huffmanBlockDecoder()()
if debugDecode {
fmt.Println("dynamic huffman block")
}
default:
// 3 is reserved.
if debugDecode {
fmt.Println("reserved data block encountered")
}
f.err = CorruptInputError(f.roffset)
}
}
func (f *decompressor) Read(b []byte) (int, error) {
for {
if len(f.toRead) > 0 {
n := copy(b, f.toRead)
f.toRead = f.toRead[n:]
if len(f.toRead) == 0 {
return n, f.err
}
return n, nil
}
if f.err != nil {
return 0, f.err
}
f.step(f)
if f.err != nil && len(f.toRead) == 0 {
f.toRead = f.dict.readFlush() // Flush what's left in case of error
}
}
}
// Support the io.WriteTo interface for io.Copy and friends.
func (f *decompressor) WriteTo(w io.Writer) (int64, error) {
total := int64(0)
flushed := false
for {
if len(f.toRead) > 0 {
n, err := w.Write(f.toRead)
total += int64(n)
if err != nil {
f.err = err
return total, err
}
if n != len(f.toRead) {
return total, io.ErrShortWrite
}
f.toRead = f.toRead[:0]
}
if f.err != nil && flushed {
if f.err == io.EOF {
return total, nil
}
return total, f.err
}
if f.err == nil {
f.step(f)
}
if len(f.toRead) == 0 && f.err != nil && !flushed {
f.toRead = f.dict.readFlush() // Flush what's left in case of error
flushed = true
}
}
}
func (f *decompressor) Close() error {
if f.err == io.EOF {
return nil
}
return f.err
}
// RFC 1951 section 3.2.7.
// Compression with dynamic Huffman codes
var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
func (f *decompressor) readHuffman() error {
// HLIT[5], HDIST[5], HCLEN[4].
for f.nb < 5+5+4 {
if err := f.moreBits(); err != nil {
return err
}
}
nlit := int(f.b&0x1F) + 257
if nlit > maxNumLit {
if debugDecode {
fmt.Println("nlit > maxNumLit", nlit)
}
return CorruptInputError(f.roffset)
}
f.b >>= 5
ndist := int(f.b&0x1F) + 1
if ndist > maxNumDist {
if debugDecode {
fmt.Println("ndist > maxNumDist", ndist)
}
return CorruptInputError(f.roffset)
}
f.b >>= 5
nclen := int(f.b&0xF) + 4
// numCodes is 19, so nclen is always valid.
f.b >>= 4
f.nb -= 5 + 5 + 4
// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
for i := 0; i < nclen; i++ {
for f.nb < 3 {
if err := f.moreBits(); err != nil {
return err
}
}
f.codebits[codeOrder[i]] = int(f.b & 0x7)
f.b >>= 3
f.nb -= 3
}
for i := nclen; i < len(codeOrder); i++ {
f.codebits[codeOrder[i]] = 0
}
if !f.h1.init(f.codebits[0:]) {
if debugDecode {
fmt.Println("init codebits failed")
}
return CorruptInputError(f.roffset)
}
// HLIT + 257 code lengths, HDIST + 1 code lengths,
// using the code length Huffman code.
for i, n := 0, nlit+ndist; i < n; {
x, err := f.huffSym(&f.h1)
if err != nil {
return err
}
if x < 16 {
// Actual length.
f.bits[i] = x
i++
continue
}
// Repeat previous length or zero.
var rep int
var nb uint
var b int
switch x {
default:
return InternalError("unexpected length code")
case 16:
rep = 3
nb = 2
if i == 0 {
if debugDecode {
fmt.Println("i==0")
}
return CorruptInputError(f.roffset)
}
b = f.bits[i-1]
case 17:
rep = 3
nb = 3
b = 0
case 18:
rep = 11
nb = 7
b = 0
}
for f.nb < nb {
if err := f.moreBits(); err != nil {
if debugDecode {
fmt.Println("morebits:", err)
}
return err
}
}
rep += int(f.b & uint32(1<<(nb&regSizeMaskUint32)-1))
f.b >>= nb & regSizeMaskUint32
f.nb -= nb
if i+rep > n {
if debugDecode {
fmt.Println("i+rep > n", i, rep, n)
}
return CorruptInputError(f.roffset)
}
for j := 0; j < rep; j++ {
f.bits[i] = b
i++
}
}
if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
if debugDecode {
fmt.Println("init2 failed")
}
return CorruptInputError(f.roffset)
}
// As an optimization, we can initialize the maxRead bits to read at a time
// for the HLIT tree to the length of the EOB marker since we know that
// every block must terminate with one. This preserves the property that
// we never read any extra bytes after the end of the DEFLATE stream.
if f.h1.maxRead < f.bits[endBlockMarker] {
f.h1.maxRead = f.bits[endBlockMarker]
}
if !f.final {
// If not the final block, the smallest block possible is
// a predefined table, BTYPE=01, with a single EOB marker.
// This will take up 3 + 7 bits.
f.h1.maxRead += 10
}
return nil
}
// Copy a single uncompressed data block from input to output.
func (f *decompressor) dataBlock() {
// Uncompressed.
// Discard current half-byte.
left := (f.nb) & 7
f.nb -= left
f.b >>= left
offBytes := f.nb >> 3
// Unfilled values will be overwritten.
f.buf[0] = uint8(f.b)
f.buf[1] = uint8(f.b >> 8)
f.buf[2] = uint8(f.b >> 16)
f.buf[3] = uint8(f.b >> 24)
f.roffset += int64(offBytes)
f.nb, f.b = 0, 0
// Length then ones-complement of length.
nr, err := io.ReadFull(f.r, f.buf[offBytes:4])
f.roffset += int64(nr)
if err != nil {
f.err = noEOF(err)
return
}
n := uint16(f.buf[0]) | uint16(f.buf[1])<<8
nn := uint16(f.buf[2]) | uint16(f.buf[3])<<8
if nn != ^n {
if debugDecode {
ncomp := ^n
fmt.Println("uint16(nn) != uint16(^n)", nn, ncomp)
}
f.err = CorruptInputError(f.roffset)
return
}
if n == 0 {
f.toRead = f.dict.readFlush()
f.finishBlock()
return
}
f.copyLen = int(n)
f.copyData()
}
// copyData copies f.copyLen bytes from the underlying reader into f.hist.
// It pauses for reads when f.hist is full.
func (f *decompressor) copyData() {
buf := f.dict.writeSlice()
if len(buf) > f.copyLen {
buf = buf[:f.copyLen]
}
cnt, err := io.ReadFull(f.r, buf)
f.roffset += int64(cnt)
f.copyLen -= cnt
f.dict.writeMark(cnt)
if err != nil {
f.err = noEOF(err)
return
}
if f.dict.availWrite() == 0 || f.copyLen > 0 {
f.toRead = f.dict.readFlush()
f.step = (*decompressor).copyData
return
}
f.finishBlock()
}
func (f *decompressor) finishBlock() {
if f.final {
if f.dict.availRead() > 0 {
f.toRead = f.dict.readFlush()
}
f.err = io.EOF
}
f.step = (*decompressor).nextBlock
}
// noEOF returns err, unless err == io.EOF, in which case it returns io.ErrUnexpectedEOF.
func noEOF(e error) error {
if e == io.EOF {
return io.ErrUnexpectedEOF
}
return e
}
func (f *decompressor) moreBits() error {
c, err := f.r.ReadByte()
if err != nil {
return noEOF(err)
}
f.roffset++
f.b |= uint32(c) << (f.nb & regSizeMaskUint32)
f.nb += 8
return nil
}
// Read the next Huffman-encoded symbol from f according to h.
func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
// with single element, huffSym must error on these two edge cases. In both
// cases, the chunks slice will be 0 for the invalid sequence, leading it
// satisfy the n == 0 check below.
n := uint(h.maxRead)
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
// but is smart enough to keep local variables in registers, so use nb and b,
// inline call to moreBits and reassign b,nb back to f on return.
nb, b := f.nb, f.b
for {
for nb < n {
c, err := f.r.ReadByte()
if err != nil {
f.b = b
f.nb = nb
return 0, noEOF(err)
}
f.roffset++
b |= uint32(c) << (nb & regSizeMaskUint32)
nb += 8
}
chunk := h.chunks[b&(huffmanNumChunks-1)]
n = uint(chunk & huffmanCountMask)
if n > huffmanChunkBits {
chunk = h.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&h.linkMask]
n = uint(chunk & huffmanCountMask)
}
if n <= nb {
if n == 0 {
f.b = b
f.nb = nb
if debugDecode {
fmt.Println("huffsym: n==0")
}
f.err = CorruptInputError(f.roffset)
return 0, f.err
}
f.b = b >> (n & regSizeMaskUint32)
f.nb = nb - n
return int(chunk >> huffmanValueShift), nil
}
}
}
func makeReader(r io.Reader) Reader {
if rr, ok := r.(Reader); ok {
return rr
}
return bufio.NewReader(r)
}
func fixedHuffmanDecoderInit() {
fixedOnce.Do(func() {
// These come from the RFC section 3.2.6.
var bits [288]int
for i := 0; i < 144; i++ {
bits[i] = 8
}
for i := 144; i < 256; i++ {
bits[i] = 9
}
for i := 256; i < 280; i++ {
bits[i] = 7
}
for i := 280; i < 288; i++ {
bits[i] = 8
}
fixedHuffmanDecoder.init(bits[:])
})
}
func (f *decompressor) Reset(r io.Reader, dict []byte) error {
*f = decompressor{
r: makeReader(r),
bits: f.bits,
codebits: f.codebits,
h1: f.h1,
h2: f.h2,
dict: f.dict,
step: (*decompressor).nextBlock,
}
f.dict.init(maxMatchOffset, dict)
return nil
}
// NewReader returns a new ReadCloser that can be used
// to read the uncompressed version of r.
// If r does not also implement io.ByteReader,
// the decompressor may read more data than necessary from r.
// It is the caller's responsibility to call Close on the ReadCloser
// when finished reading.
//
// The ReadCloser returned by NewReader also implements Resetter.
func NewReader(r io.Reader) io.ReadCloser {
fixedHuffmanDecoderInit()
var f decompressor
f.r = makeReader(r)
f.bits = new([maxNumLit + maxNumDist]int)
f.codebits = new([numCodes]int)
f.step = (*decompressor).nextBlock
f.dict.init(maxMatchOffset, nil)
return &f
}
// NewReaderDict is like NewReader but initializes the reader
// with a preset dictionary. The returned Reader behaves as if
// the uncompressed data stream started with the given dictionary,
// which has already been read. NewReaderDict is typically used
// to read data compressed by NewWriterDict.
//
// The ReadCloser returned by NewReader also implements Resetter.
func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
fixedHuffmanDecoderInit()
var f decompressor
f.r = makeReader(r)
f.bits = new([maxNumLit + maxNumDist]int)
f.codebits = new([numCodes]int)
f.step = (*decompressor).nextBlock
f.dict.init(maxMatchOffset, dict)
return &f
}

1283
vendor/github.com/klauspost/compress/flate/inflate_gen.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

240
vendor/github.com/klauspost/compress/flate/level1.go generated vendored Normal file
View File

@ -0,0 +1,240 @@
package flate
import (
"encoding/binary"
"fmt"
"math/bits"
)
// fastGen maintains the table for matches,
// and the previous byte block for level 2.
// This is the generic implementation.
type fastEncL1 struct {
fastGen
table [tableSize]tableEntry
}
// EncodeL1 uses a similar algorithm to level 1
func (e *fastEncL1) Encode(dst *tokens, src []byte) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
if debugDeflate && e.cur < 0 {
panic(fmt.Sprint("e.cur < 0: ", e.cur))
}
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
e.cur = maxMatchOffset
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
for i := range e.table[:] {
v := e.table[i].offset
if v <= minOff {
v = 0
} else {
v = v - e.cur + maxMatchOffset
}
e.table[i].offset = v
}
e.cur = maxMatchOffset
}
s := e.addBlock(src)
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Override src
src = e.hist
nextEmit := s
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load3232(src, s)
for {
const skipLog = 5
const doEvery = 2
nextS := s
var candidate tableEntry
for {
nextHash := hash(cv)
candidate = e.table[nextHash]
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit {
goto emitRemainder
}
now := load6432(src, nextS)
e.table[nextHash] = tableEntry{offset: s + e.cur}
nextHash = hash(uint32(now))
offset := s - (candidate.offset - e.cur)
if offset < maxMatchOffset && cv == load3232(src, candidate.offset-e.cur) {
e.table[nextHash] = tableEntry{offset: nextS + e.cur}
break
}
// Do one right away...
cv = uint32(now)
s = nextS
nextS++
candidate = e.table[nextHash]
now >>= 8
e.table[nextHash] = tableEntry{offset: s + e.cur}
offset = s - (candidate.offset - e.cur)
if offset < maxMatchOffset && cv == load3232(src, candidate.offset-e.cur) {
e.table[nextHash] = tableEntry{offset: nextS + e.cur}
break
}
cv = uint32(now)
s = nextS
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
t := candidate.offset - e.cur
var l = int32(4)
if false {
l = e.matchlenLong(s+4, t+4, src) + 4
} else {
// inlined:
a := src[s+4:]
b := src[t+4:]
for len(a) >= 8 {
if diff := binary.LittleEndian.Uint64(a) ^ binary.LittleEndian.Uint64(b); diff != 0 {
l += int32(bits.TrailingZeros64(diff) >> 3)
break
}
l += 8
a = a[8:]
b = b[8:]
}
if len(a) < 8 {
b = b[:len(a)]
for i := range a {
if a[i] != b[i] {
break
}
l++
}
}
}
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
// Save the match found
if false {
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
} else {
// Inlined...
xoffset := uint32(s - t - baseMatchOffset)
xlength := l
oc := offsetCode(xoffset)
xoffset |= oc << 16
for xlength > 0 {
xl := xlength
if xl > 258 {
if xl > 258+baseMatchLength {
xl = 258
} else {
xl = 258 - baseMatchLength
}
}
xlength -= xl
xl -= baseMatchLength
dst.extraHist[lengthCodes1[uint8(xl)]]++
dst.offHist[oc]++
dst.tokens[dst.n] = token(matchType | uint32(xl)<<lengthShift | xoffset)
dst.n++
}
}
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
// Index first pair after match end.
if int(s+l+4) < len(src) {
cv := load3232(src, s)
e.table[hash(cv)] = tableEntry{offset: s + e.cur}
}
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-2 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load6432(src, s-2)
o := e.cur + s - 2
prevHash := hash(uint32(x))
e.table[prevHash] = tableEntry{offset: o}
x >>= 16
currHash := hash(uint32(x))
candidate = e.table[currHash]
e.table[currHash] = tableEntry{offset: o + 2}
offset := s - (candidate.offset - e.cur)
if offset > maxMatchOffset || uint32(x) != load3232(src, candidate.offset-e.cur) {
cv = uint32(x >> 8)
s++
break
}
}
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}

213
vendor/github.com/klauspost/compress/flate/level2.go generated vendored Normal file
View File

@ -0,0 +1,213 @@
package flate
import "fmt"
// fastGen maintains the table for matches,
// and the previous byte block for level 2.
// This is the generic implementation.
type fastEncL2 struct {
fastGen
table [bTableSize]tableEntry
}
// EncodeL2 uses a similar algorithm to level 1, but is capable
// of matching across blocks giving better compression at a small slowdown.
func (e *fastEncL2) Encode(dst *tokens, src []byte) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
if debugDeflate && e.cur < 0 {
panic(fmt.Sprint("e.cur < 0: ", e.cur))
}
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
e.cur = maxMatchOffset
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
for i := range e.table[:] {
v := e.table[i].offset
if v <= minOff {
v = 0
} else {
v = v - e.cur + maxMatchOffset
}
e.table[i].offset = v
}
e.cur = maxMatchOffset
}
s := e.addBlock(src)
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Override src
src = e.hist
nextEmit := s
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load3232(src, s)
for {
// When should we start skipping if we haven't found matches in a long while.
const skipLog = 5
const doEvery = 2
nextS := s
var candidate tableEntry
for {
nextHash := hash4u(cv, bTableBits)
s = nextS
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit {
goto emitRemainder
}
candidate = e.table[nextHash]
now := load6432(src, nextS)
e.table[nextHash] = tableEntry{offset: s + e.cur}
nextHash = hash4u(uint32(now), bTableBits)
offset := s - (candidate.offset - e.cur)
if offset < maxMatchOffset && cv == load3232(src, candidate.offset-e.cur) {
e.table[nextHash] = tableEntry{offset: nextS + e.cur}
break
}
// Do one right away...
cv = uint32(now)
s = nextS
nextS++
candidate = e.table[nextHash]
now >>= 8
e.table[nextHash] = tableEntry{offset: s + e.cur}
offset = s - (candidate.offset - e.cur)
if offset < maxMatchOffset && cv == load3232(src, candidate.offset-e.cur) {
break
}
cv = uint32(now)
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
t := candidate.offset - e.cur
l := e.matchlenLong(s+4, t+4, src) + 4
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
// Index first pair after match end.
if int(s+l+4) < len(src) {
cv := load3232(src, s)
e.table[hash4u(cv, bTableBits)] = tableEntry{offset: s + e.cur}
}
goto emitRemainder
}
// Store every second hash in-between, but offset by 1.
for i := s - l + 2; i < s-5; i += 7 {
x := load6432(src, i)
nextHash := hash4u(uint32(x), bTableBits)
e.table[nextHash] = tableEntry{offset: e.cur + i}
// Skip one
x >>= 16
nextHash = hash4u(uint32(x), bTableBits)
e.table[nextHash] = tableEntry{offset: e.cur + i + 2}
// Skip one
x >>= 16
nextHash = hash4u(uint32(x), bTableBits)
e.table[nextHash] = tableEntry{offset: e.cur + i + 4}
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-2 to s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load6432(src, s-2)
o := e.cur + s - 2
prevHash := hash4u(uint32(x), bTableBits)
prevHash2 := hash4u(uint32(x>>8), bTableBits)
e.table[prevHash] = tableEntry{offset: o}
e.table[prevHash2] = tableEntry{offset: o + 1}
currHash := hash4u(uint32(x>>16), bTableBits)
candidate = e.table[currHash]
e.table[currHash] = tableEntry{offset: o + 2}
offset := s - (candidate.offset - e.cur)
if offset > maxMatchOffset || uint32(x>>16) != load3232(src, candidate.offset-e.cur) {
cv = uint32(x >> 24)
s++
break
}
}
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}

240
vendor/github.com/klauspost/compress/flate/level3.go generated vendored Normal file
View File

@ -0,0 +1,240 @@
package flate
import "fmt"
// fastEncL3
type fastEncL3 struct {
fastGen
table [1 << 16]tableEntryPrev
}
// Encode uses a similar algorithm to level 2, will check up to two candidates.
func (e *fastEncL3) Encode(dst *tokens, src []byte) {
const (
inputMargin = 8 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
tableBits = 16
tableSize = 1 << tableBits
)
if debugDeflate && e.cur < 0 {
panic(fmt.Sprint("e.cur < 0: ", e.cur))
}
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntryPrev{}
}
e.cur = maxMatchOffset
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
for i := range e.table[:] {
v := e.table[i]
if v.Cur.offset <= minOff {
v.Cur.offset = 0
} else {
v.Cur.offset = v.Cur.offset - e.cur + maxMatchOffset
}
if v.Prev.offset <= minOff {
v.Prev.offset = 0
} else {
v.Prev.offset = v.Prev.offset - e.cur + maxMatchOffset
}
e.table[i] = v
}
e.cur = maxMatchOffset
}
s := e.addBlock(src)
// Skip if too small.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Override src
src = e.hist
nextEmit := s
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load3232(src, s)
for {
const skipLog = 6
nextS := s
var candidate tableEntry
for {
nextHash := hash4u(cv, tableBits)
s = nextS
nextS = s + 1 + (s-nextEmit)>>skipLog
if nextS > sLimit {
goto emitRemainder
}
candidates := e.table[nextHash]
now := load3232(src, nextS)
// Safe offset distance until s + 4...
minOffset := e.cur + s - (maxMatchOffset - 4)
e.table[nextHash] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur}}
// Check both candidates
candidate = candidates.Cur
if candidate.offset < minOffset {
cv = now
// Previous will also be invalid, we have nothing.
continue
}
if cv == load3232(src, candidate.offset-e.cur) {
if candidates.Prev.offset < minOffset || cv != load3232(src, candidates.Prev.offset-e.cur) {
break
}
// Both match and are valid, pick longest.
offset := s - (candidate.offset - e.cur)
o2 := s - (candidates.Prev.offset - e.cur)
l1, l2 := matchLen(src[s+4:], src[s-offset+4:]), matchLen(src[s+4:], src[s-o2+4:])
if l2 > l1 {
candidate = candidates.Prev
}
break
} else {
// We only check if value mismatches.
// Offset will always be invalid in other cases.
candidate = candidates.Prev
if candidate.offset > minOffset && cv == load3232(src, candidate.offset-e.cur) {
break
}
}
cv = now
}
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
//
t := candidate.offset - e.cur
l := e.matchlenLong(s+4, t+4, src) + 4
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
t += l
// Index first pair after match end.
if int(t+4) < len(src) && t > 0 {
cv := load3232(src, t)
nextHash := hash4u(cv, tableBits)
e.table[nextHash] = tableEntryPrev{
Prev: e.table[nextHash].Cur,
Cur: tableEntry{offset: e.cur + t},
}
}
goto emitRemainder
}
// Store every 5th hash in-between.
for i := s - l + 2; i < s-5; i += 5 {
nextHash := hash4u(load3232(src, i), tableBits)
e.table[nextHash] = tableEntryPrev{
Prev: e.table[nextHash].Cur,
Cur: tableEntry{offset: e.cur + i}}
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-2 to s.
x := load6432(src, s-2)
prevHash := hash4u(uint32(x), tableBits)
e.table[prevHash] = tableEntryPrev{
Prev: e.table[prevHash].Cur,
Cur: tableEntry{offset: e.cur + s - 2},
}
x >>= 8
prevHash = hash4u(uint32(x), tableBits)
e.table[prevHash] = tableEntryPrev{
Prev: e.table[prevHash].Cur,
Cur: tableEntry{offset: e.cur + s - 1},
}
x >>= 8
currHash := hash4u(uint32(x), tableBits)
candidates := e.table[currHash]
cv = uint32(x)
e.table[currHash] = tableEntryPrev{
Prev: candidates.Cur,
Cur: tableEntry{offset: s + e.cur},
}
// Check both candidates
candidate = candidates.Cur
minOffset := e.cur + s - (maxMatchOffset - 4)
if candidate.offset > minOffset {
if cv == load3232(src, candidate.offset-e.cur) {
// Found a match...
continue
}
candidate = candidates.Prev
if candidate.offset > minOffset && cv == load3232(src, candidate.offset-e.cur) {
// Match at prev...
continue
}
}
cv = uint32(x >> 8)
s++
break
}
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}

220
vendor/github.com/klauspost/compress/flate/level4.go generated vendored Normal file
View File

@ -0,0 +1,220 @@
package flate
import "fmt"
type fastEncL4 struct {
fastGen
table [tableSize]tableEntry
bTable [tableSize]tableEntry
}
func (e *fastEncL4) Encode(dst *tokens, src []byte) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
if debugDeflate && e.cur < 0 {
panic(fmt.Sprint("e.cur < 0: ", e.cur))
}
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
for i := range e.bTable[:] {
e.bTable[i] = tableEntry{}
}
e.cur = maxMatchOffset
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
for i := range e.table[:] {
v := e.table[i].offset
if v <= minOff {
v = 0
} else {
v = v - e.cur + maxMatchOffset
}
e.table[i].offset = v
}
for i := range e.bTable[:] {
v := e.bTable[i].offset
if v <= minOff {
v = 0
} else {
v = v - e.cur + maxMatchOffset
}
e.bTable[i].offset = v
}
e.cur = maxMatchOffset
}
s := e.addBlock(src)
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Override src
src = e.hist
nextEmit := s
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load6432(src, s)
for {
const skipLog = 6
const doEvery = 1
nextS := s
var t int32
for {
nextHashS := hash4x64(cv, tableBits)
nextHashL := hash7(cv, tableBits)
s = nextS
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit {
goto emitRemainder
}
// Fetch a short+long candidate
sCandidate := e.table[nextHashS]
lCandidate := e.bTable[nextHashL]
next := load6432(src, nextS)
entry := tableEntry{offset: s + e.cur}
e.table[nextHashS] = entry
e.bTable[nextHashL] = entry
t = lCandidate.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.offset-e.cur) {
// We got a long match. Use that.
break
}
t = sCandidate.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, sCandidate.offset-e.cur) {
// Found a 4 match...
lCandidate = e.bTable[hash7(next, tableBits)]
// If the next long is a candidate, check if we should use that instead...
lOff := nextS - (lCandidate.offset - e.cur)
if lOff < maxMatchOffset && load3232(src, lCandidate.offset-e.cur) == uint32(next) {
l1, l2 := matchLen(src[s+4:], src[t+4:]), matchLen(src[nextS+4:], src[nextS-lOff+4:])
if l2 > l1 {
s = nextS
t = lCandidate.offset - e.cur
}
}
break
}
cv = next
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
// Extend the 4-byte match as long as possible.
l := e.matchlenLong(s+4, t+4, src) + 4
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
if debugDeflate {
if t >= s {
panic("s-t")
}
if (s - t) > maxMatchOffset {
panic(fmt.Sprintln("mmo", t))
}
if l < baseMatchLength {
panic("bml")
}
}
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
// Index first pair after match end.
if int(s+8) < len(src) {
cv := load6432(src, s)
e.table[hash4x64(cv, tableBits)] = tableEntry{offset: s + e.cur}
e.bTable[hash7(cv, tableBits)] = tableEntry{offset: s + e.cur}
}
goto emitRemainder
}
// Store every 3rd hash in-between
if true {
i := nextS
if i < s-1 {
cv := load6432(src, i)
t := tableEntry{offset: i + e.cur}
t2 := tableEntry{offset: t.offset + 1}
e.bTable[hash7(cv, tableBits)] = t
e.bTable[hash7(cv>>8, tableBits)] = t2
e.table[hash4u(uint32(cv>>8), tableBits)] = t2
i += 3
for ; i < s-1; i += 3 {
cv := load6432(src, i)
t := tableEntry{offset: i + e.cur}
t2 := tableEntry{offset: t.offset + 1}
e.bTable[hash7(cv, tableBits)] = t
e.bTable[hash7(cv>>8, tableBits)] = t2
e.table[hash4u(uint32(cv>>8), tableBits)] = t2
}
}
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s.
x := load6432(src, s-1)
o := e.cur + s - 1
prevHashS := hash4x64(x, tableBits)
prevHashL := hash7(x, tableBits)
e.table[prevHashS] = tableEntry{offset: o}
e.bTable[prevHashL] = tableEntry{offset: o}
cv = x >> 8
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}

302
vendor/github.com/klauspost/compress/flate/level5.go generated vendored Normal file
View File

@ -0,0 +1,302 @@
package flate
import "fmt"
type fastEncL5 struct {
fastGen
table [tableSize]tableEntry
bTable [tableSize]tableEntryPrev
}
func (e *fastEncL5) Encode(dst *tokens, src []byte) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
if debugDeflate && e.cur < 0 {
panic(fmt.Sprint("e.cur < 0: ", e.cur))
}
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
for i := range e.bTable[:] {
e.bTable[i] = tableEntryPrev{}
}
e.cur = maxMatchOffset
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
for i := range e.table[:] {
v := e.table[i].offset
if v <= minOff {
v = 0
} else {
v = v - e.cur + maxMatchOffset
}
e.table[i].offset = v
}
for i := range e.bTable[:] {
v := e.bTable[i]
if v.Cur.offset <= minOff {
v.Cur.offset = 0
v.Prev.offset = 0
} else {
v.Cur.offset = v.Cur.offset - e.cur + maxMatchOffset
if v.Prev.offset <= minOff {
v.Prev.offset = 0
} else {
v.Prev.offset = v.Prev.offset - e.cur + maxMatchOffset
}
}
e.bTable[i] = v
}
e.cur = maxMatchOffset
}
s := e.addBlock(src)
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Override src
src = e.hist
nextEmit := s
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load6432(src, s)
for {
const skipLog = 6
const doEvery = 1
nextS := s
var l int32
var t int32
for {
nextHashS := hash4x64(cv, tableBits)
nextHashL := hash7(cv, tableBits)
s = nextS
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit {
goto emitRemainder
}
// Fetch a short+long candidate
sCandidate := e.table[nextHashS]
lCandidate := e.bTable[nextHashL]
next := load6432(src, nextS)
entry := tableEntry{offset: s + e.cur}
e.table[nextHashS] = entry
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = entry, eLong.Cur
nextHashS = hash4x64(next, tableBits)
nextHashL = hash7(next, tableBits)
t = lCandidate.Cur.offset - e.cur
if s-t < maxMatchOffset {
if uint32(cv) == load3232(src, lCandidate.Cur.offset-e.cur) {
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
t2 := lCandidate.Prev.offset - e.cur
if s-t2 < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
l = e.matchlen(s+4, t+4, src) + 4
ml1 := e.matchlen(s+4, t2+4, src) + 4
if ml1 > l {
t = t2
l = ml1
break
}
}
break
}
t = lCandidate.Prev.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
break
}
}
t = sCandidate.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, sCandidate.offset-e.cur) {
// Found a 4 match...
l = e.matchlen(s+4, t+4, src) + 4
lCandidate = e.bTable[nextHashL]
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
// If the next long is a candidate, use that...
t2 := lCandidate.Cur.offset - e.cur
if nextS-t2 < maxMatchOffset {
if load3232(src, lCandidate.Cur.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
s = nextS
l = ml
break
}
}
// If the previous long is a candidate, use that...
t2 = lCandidate.Prev.offset - e.cur
if nextS-t2 < maxMatchOffset && load3232(src, lCandidate.Prev.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
s = nextS
l = ml
break
}
}
}
break
}
cv = next
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
if l == 0 {
// Extend the 4-byte match as long as possible.
l = e.matchlenLong(s+4, t+4, src) + 4
} else if l == maxMatchLength {
l += e.matchlenLong(s+l, t+l, src)
}
// Try to locate a better match by checking the end of best match...
if sAt := s + l; l < 30 && sAt < sLimit {
eLong := e.bTable[hash7(load6432(src, sAt), tableBits)].Cur.offset
// Test current
t2 := eLong - e.cur - l
off := s - t2
if t2 >= 0 && off < maxMatchOffset && off > 0 {
if l2 := e.matchlenLong(s, t2, src); l2 > l {
t = t2
l = l2
}
}
}
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
if debugDeflate {
if t >= s {
panic(fmt.Sprintln("s-t", s, t))
}
if (s - t) > maxMatchOffset {
panic(fmt.Sprintln("mmo", s-t))
}
if l < baseMatchLength {
panic("bml")
}
}
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
goto emitRemainder
}
// Store every 3rd hash in-between.
if true {
const hashEvery = 3
i := s - l + 1
if i < s-1 {
cv := load6432(src, i)
t := tableEntry{offset: i + e.cur}
e.table[hash4x64(cv, tableBits)] = t
eLong := &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = t, eLong.Cur
// Do an long at i+1
cv >>= 8
t = tableEntry{offset: t.offset + 1}
eLong = &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = t, eLong.Cur
// We only have enough bits for a short entry at i+2
cv >>= 8
t = tableEntry{offset: t.offset + 1}
e.table[hash4x64(cv, tableBits)] = t
// Skip one - otherwise we risk hitting 's'
i += 4
for ; i < s-1; i += hashEvery {
cv := load6432(src, i)
t := tableEntry{offset: i + e.cur}
t2 := tableEntry{offset: t.offset + 1}
eLong := &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = t, eLong.Cur
e.table[hash4u(uint32(cv>>8), tableBits)] = t2
}
}
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s.
x := load6432(src, s-1)
o := e.cur + s - 1
prevHashS := hash4x64(x, tableBits)
prevHashL := hash7(x, tableBits)
e.table[prevHashS] = tableEntry{offset: o}
eLong := &e.bTable[prevHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: o}, eLong.Cur
cv = x >> 8
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}

315
vendor/github.com/klauspost/compress/flate/level6.go generated vendored Normal file
View File

@ -0,0 +1,315 @@
package flate
import "fmt"
type fastEncL6 struct {
fastGen
table [tableSize]tableEntry
bTable [tableSize]tableEntryPrev
}
func (e *fastEncL6) Encode(dst *tokens, src []byte) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
if debugDeflate && e.cur < 0 {
panic(fmt.Sprint("e.cur < 0: ", e.cur))
}
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
for i := range e.bTable[:] {
e.bTable[i] = tableEntryPrev{}
}
e.cur = maxMatchOffset
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
for i := range e.table[:] {
v := e.table[i].offset
if v <= minOff {
v = 0
} else {
v = v - e.cur + maxMatchOffset
}
e.table[i].offset = v
}
for i := range e.bTable[:] {
v := e.bTable[i]
if v.Cur.offset <= minOff {
v.Cur.offset = 0
v.Prev.offset = 0
} else {
v.Cur.offset = v.Cur.offset - e.cur + maxMatchOffset
if v.Prev.offset <= minOff {
v.Prev.offset = 0
} else {
v.Prev.offset = v.Prev.offset - e.cur + maxMatchOffset
}
}
e.bTable[i] = v
}
e.cur = maxMatchOffset
}
s := e.addBlock(src)
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Override src
src = e.hist
nextEmit := s
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load6432(src, s)
// Repeat MUST be > 1 and within range
repeat := int32(1)
for {
const skipLog = 7
const doEvery = 1
nextS := s
var l int32
var t int32
for {
nextHashS := hash4x64(cv, tableBits)
nextHashL := hash7(cv, tableBits)
s = nextS
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit {
goto emitRemainder
}
// Fetch a short+long candidate
sCandidate := e.table[nextHashS]
lCandidate := e.bTable[nextHashL]
next := load6432(src, nextS)
entry := tableEntry{offset: s + e.cur}
e.table[nextHashS] = entry
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = entry, eLong.Cur
// Calculate hashes of 'next'
nextHashS = hash4x64(next, tableBits)
nextHashL = hash7(next, tableBits)
t = lCandidate.Cur.offset - e.cur
if s-t < maxMatchOffset {
if uint32(cv) == load3232(src, lCandidate.Cur.offset-e.cur) {
// Long candidate matches at least 4 bytes.
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
// Check the previous long candidate as well.
t2 := lCandidate.Prev.offset - e.cur
if s-t2 < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
l = e.matchlen(s+4, t+4, src) + 4
ml1 := e.matchlen(s+4, t2+4, src) + 4
if ml1 > l {
t = t2
l = ml1
break
}
}
break
}
// Current value did not match, but check if previous long value does.
t = lCandidate.Prev.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
break
}
}
t = sCandidate.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, sCandidate.offset-e.cur) {
// Found a 4 match...
l = e.matchlen(s+4, t+4, src) + 4
// Look up next long candidate (at nextS)
lCandidate = e.bTable[nextHashL]
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
// Check repeat at s + repOff
const repOff = 1
t2 := s - repeat + repOff
if load3232(src, t2) == uint32(cv>>(8*repOff)) {
ml := e.matchlen(s+4+repOff, t2+4, src) + 4
if ml > l {
t = t2
l = ml
s += repOff
// Not worth checking more.
break
}
}
// If the next long is a candidate, use that...
t2 = lCandidate.Cur.offset - e.cur
if nextS-t2 < maxMatchOffset {
if load3232(src, lCandidate.Cur.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
s = nextS
l = ml
// This is ok, but check previous as well.
}
}
// If the previous long is a candidate, use that...
t2 = lCandidate.Prev.offset - e.cur
if nextS-t2 < maxMatchOffset && load3232(src, lCandidate.Prev.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
s = nextS
l = ml
break
}
}
}
break
}
cv = next
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
// Extend the 4-byte match as long as possible.
if l == 0 {
l = e.matchlenLong(s+4, t+4, src) + 4
} else if l == maxMatchLength {
l += e.matchlenLong(s+l, t+l, src)
}
// Try to locate a better match by checking the end-of-match...
if sAt := s + l; sAt < sLimit {
eLong := &e.bTable[hash7(load6432(src, sAt), tableBits)]
// Test current
t2 := eLong.Cur.offset - e.cur - l
off := s - t2
if off < maxMatchOffset {
if off > 0 && t2 >= 0 {
if l2 := e.matchlenLong(s, t2, src); l2 > l {
t = t2
l = l2
}
}
// Test next:
t2 = eLong.Prev.offset - e.cur - l
off := s - t2
if off > 0 && off < maxMatchOffset && t2 >= 0 {
if l2 := e.matchlenLong(s, t2, src); l2 > l {
t = t2
l = l2
}
}
}
}
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
if false {
if t >= s {
panic(fmt.Sprintln("s-t", s, t))
}
if (s - t) > maxMatchOffset {
panic(fmt.Sprintln("mmo", s-t))
}
if l < baseMatchLength {
panic("bml")
}
}
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
repeat = s - t
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
// Index after match end.
for i := nextS + 1; i < int32(len(src))-8; i += 2 {
cv := load6432(src, i)
e.table[hash4x64(cv, tableBits)] = tableEntry{offset: i + e.cur}
eLong := &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = tableEntry{offset: i + e.cur}, eLong.Cur
}
goto emitRemainder
}
// Store every long hash in-between and every second short.
if true {
for i := nextS + 1; i < s-1; i += 2 {
cv := load6432(src, i)
t := tableEntry{offset: i + e.cur}
t2 := tableEntry{offset: t.offset + 1}
eLong := &e.bTable[hash7(cv, tableBits)]
eLong2 := &e.bTable[hash7(cv>>8, tableBits)]
e.table[hash4x64(cv, tableBits)] = t
eLong.Cur, eLong.Prev = t, eLong.Cur
eLong2.Cur, eLong2.Prev = t2, eLong2.Cur
}
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s.
cv = load6432(src, s)
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}

View File

@ -0,0 +1,37 @@
package flate
const (
// Masks for shifts with register sizes of the shift value.
// This can be used to work around the x86 design of shifting by mod register size.
// It can be used when a variable shift is always smaller than the register size.
// reg8SizeMaskX - shift value is 8 bits, shifted is X
reg8SizeMask8 = 7
reg8SizeMask16 = 15
reg8SizeMask32 = 31
reg8SizeMask64 = 63
// reg16SizeMaskX - shift value is 16 bits, shifted is X
reg16SizeMask8 = reg8SizeMask8
reg16SizeMask16 = reg8SizeMask16
reg16SizeMask32 = reg8SizeMask32
reg16SizeMask64 = reg8SizeMask64
// reg32SizeMaskX - shift value is 32 bits, shifted is X
reg32SizeMask8 = reg8SizeMask8
reg32SizeMask16 = reg8SizeMask16
reg32SizeMask32 = reg8SizeMask32
reg32SizeMask64 = reg8SizeMask64
// reg64SizeMaskX - shift value is 64 bits, shifted is X
reg64SizeMask8 = reg8SizeMask8
reg64SizeMask16 = reg8SizeMask16
reg64SizeMask32 = reg8SizeMask32
reg64SizeMask64 = reg8SizeMask64
// regSizeMaskUintX - shift value is uint, shifted is X
regSizeMaskUint8 = reg8SizeMask8
regSizeMaskUint16 = reg8SizeMask16
regSizeMaskUint32 = reg8SizeMask32
regSizeMaskUint64 = reg8SizeMask64
)

View File

@ -0,0 +1,40 @@
//go:build !amd64
// +build !amd64
package flate
const (
// Masks for shifts with register sizes of the shift value.
// This can be used to work around the x86 design of shifting by mod register size.
// It can be used when a variable shift is always smaller than the register size.
// reg8SizeMaskX - shift value is 8 bits, shifted is X
reg8SizeMask8 = 0xff
reg8SizeMask16 = 0xff
reg8SizeMask32 = 0xff
reg8SizeMask64 = 0xff
// reg16SizeMaskX - shift value is 16 bits, shifted is X
reg16SizeMask8 = 0xffff
reg16SizeMask16 = 0xffff
reg16SizeMask32 = 0xffff
reg16SizeMask64 = 0xffff
// reg32SizeMaskX - shift value is 32 bits, shifted is X
reg32SizeMask8 = 0xffffffff
reg32SizeMask16 = 0xffffffff
reg32SizeMask32 = 0xffffffff
reg32SizeMask64 = 0xffffffff
// reg64SizeMaskX - shift value is 64 bits, shifted is X
reg64SizeMask8 = 0xffffffffffffffff
reg64SizeMask16 = 0xffffffffffffffff
reg64SizeMask32 = 0xffffffffffffffff
reg64SizeMask64 = 0xffffffffffffffff
// regSizeMaskUintX - shift value is uint, shifted is X
regSizeMaskUint8 = ^uint(0)
regSizeMaskUint16 = ^uint(0)
regSizeMaskUint32 = ^uint(0)
regSizeMaskUint64 = ^uint(0)
)

305
vendor/github.com/klauspost/compress/flate/stateless.go generated vendored Normal file
View File

@ -0,0 +1,305 @@
package flate
import (
"io"
"math"
"sync"
)
const (
maxStatelessBlock = math.MaxInt16
// dictionary will be taken from maxStatelessBlock, so limit it.
maxStatelessDict = 8 << 10
slTableBits = 13
slTableSize = 1 << slTableBits
slTableShift = 32 - slTableBits
)
type statelessWriter struct {
dst io.Writer
closed bool
}
func (s *statelessWriter) Close() error {
if s.closed {
return nil
}
s.closed = true
// Emit EOF block
return StatelessDeflate(s.dst, nil, true, nil)
}
func (s *statelessWriter) Write(p []byte) (n int, err error) {
err = StatelessDeflate(s.dst, p, false, nil)
if err != nil {
return 0, err
}
return len(p), nil
}
func (s *statelessWriter) Reset(w io.Writer) {
s.dst = w
s.closed = false
}
// NewStatelessWriter will do compression but without maintaining any state
// between Write calls.
// There will be no memory kept between Write calls,
// but compression and speed will be suboptimal.
// Because of this, the size of actual Write calls will affect output size.
func NewStatelessWriter(dst io.Writer) io.WriteCloser {
return &statelessWriter{dst: dst}
}
// bitWriterPool contains bit writers that can be reused.
var bitWriterPool = sync.Pool{
New: func() interface{} {
return newHuffmanBitWriter(nil)
},
}
// StatelessDeflate allows compressing directly to a Writer without retaining state.
// When returning everything will be flushed.
// Up to 8KB of an optional dictionary can be given which is presumed to precede the block.
// Longer dictionaries will be truncated and will still produce valid output.
// Sending nil dictionary is perfectly fine.
func StatelessDeflate(out io.Writer, in []byte, eof bool, dict []byte) error {
var dst tokens
bw := bitWriterPool.Get().(*huffmanBitWriter)
bw.reset(out)
defer func() {
// don't keep a reference to our output
bw.reset(nil)
bitWriterPool.Put(bw)
}()
if eof && len(in) == 0 {
// Just write an EOF block.
// Could be faster...
bw.writeStoredHeader(0, true)
bw.flush()
return bw.err
}
// Truncate dict
if len(dict) > maxStatelessDict {
dict = dict[len(dict)-maxStatelessDict:]
}
for len(in) > 0 {
todo := in
if len(todo) > maxStatelessBlock-len(dict) {
todo = todo[:maxStatelessBlock-len(dict)]
}
in = in[len(todo):]
uncompressed := todo
if len(dict) > 0 {
// combine dict and source
bufLen := len(todo) + len(dict)
combined := make([]byte, bufLen)
copy(combined, dict)
copy(combined[len(dict):], todo)
todo = combined
}
// Compress
statelessEnc(&dst, todo, int16(len(dict)))
isEof := eof && len(in) == 0
if dst.n == 0 {
bw.writeStoredHeader(len(uncompressed), isEof)
if bw.err != nil {
return bw.err
}
bw.writeBytes(uncompressed)
} else if int(dst.n) > len(uncompressed)-len(uncompressed)>>4 {
// If we removed less than 1/16th, huffman compress the block.
bw.writeBlockHuff(isEof, uncompressed, len(in) == 0)
} else {
bw.writeBlockDynamic(&dst, isEof, uncompressed, len(in) == 0)
}
if len(in) > 0 {
// Retain a dict if we have more
dict = todo[len(todo)-maxStatelessDict:]
dst.Reset()
}
if bw.err != nil {
return bw.err
}
}
if !eof {
// Align, only a stored block can do that.
bw.writeStoredHeader(0, false)
}
bw.flush()
return bw.err
}
func hashSL(u uint32) uint32 {
return (u * 0x1e35a7bd) >> slTableShift
}
func load3216(b []byte, i int16) uint32 {
// Help the compiler eliminate bounds checks on the read so it can be done in a single read.
b = b[i:]
b = b[:4]
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func load6416(b []byte, i int16) uint64 {
// Help the compiler eliminate bounds checks on the read so it can be done in a single read.
b = b[i:]
b = b[:8]
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
func statelessEnc(dst *tokens, src []byte, startAt int16) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
type tableEntry struct {
offset int16
}
var table [slTableSize]tableEntry
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src)-int(startAt) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = 0
return
}
// Index until startAt
if startAt > 0 {
cv := load3232(src, 0)
for i := int16(0); i < startAt; i++ {
table[hashSL(cv)] = tableEntry{offset: i}
cv = (cv >> 8) | (uint32(src[i+4]) << 24)
}
}
s := startAt + 1
nextEmit := startAt
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int16(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load3216(src, s)
for {
const skipLog = 5
const doEvery = 2
nextS := s
var candidate tableEntry
for {
nextHash := hashSL(cv)
candidate = table[nextHash]
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit || nextS <= 0 {
goto emitRemainder
}
now := load6416(src, nextS)
table[nextHash] = tableEntry{offset: s}
nextHash = hashSL(uint32(now))
if cv == load3216(src, candidate.offset) {
table[nextHash] = tableEntry{offset: nextS}
break
}
// Do one right away...
cv = uint32(now)
s = nextS
nextS++
candidate = table[nextHash]
now >>= 8
table[nextHash] = tableEntry{offset: s}
if cv == load3216(src, candidate.offset) {
table[nextHash] = tableEntry{offset: nextS}
break
}
cv = uint32(now)
s = nextS
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
t := candidate.offset
l := int16(matchLen(src[s+4:], src[t+4:]) + 4)
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
// Save the match found
dst.AddMatchLong(int32(l), uint32(s-t-baseMatchOffset))
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-2 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load6416(src, s-2)
o := s - 2
prevHash := hashSL(uint32(x))
table[prevHash] = tableEntry{offset: o}
x >>= 16
currHash := hashSL(uint32(x))
candidate = table[currHash]
table[currHash] = tableEntry{offset: o + 2}
if uint32(x) != load3216(src, candidate.offset) {
cv = uint32(x >> 8)
s++
break
}
}
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}

379
vendor/github.com/klauspost/compress/flate/token.go generated vendored Normal file
View File

@ -0,0 +1,379 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"math"
)
const (
// bits 0-16 xoffset = offset - MIN_OFFSET_SIZE, or literal - 16 bits
// bits 16-22 offsetcode - 5 bits
// bits 22-30 xlength = length - MIN_MATCH_LENGTH - 8 bits
// bits 30-32 type 0 = literal 1=EOF 2=Match 3=Unused - 2 bits
lengthShift = 22
offsetMask = 1<<lengthShift - 1
typeMask = 3 << 30
literalType = 0 << 30
matchType = 1 << 30
matchOffsetOnlyMask = 0xffff
)
// The length code for length X (MIN_MATCH_LENGTH <= X <= MAX_MATCH_LENGTH)
// is lengthCodes[length - MIN_MATCH_LENGTH]
var lengthCodes = [256]uint8{
0, 1, 2, 3, 4, 5, 6, 7, 8, 8,
9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
13, 13, 13, 13, 14, 14, 14, 14, 15, 15,
15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
17, 17, 17, 17, 17, 17, 17, 17, 18, 18,
18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
19, 19, 19, 19, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 28,
}
// lengthCodes1 is length codes, but starting at 1.
var lengthCodes1 = [256]uint8{
1, 2, 3, 4, 5, 6, 7, 8, 9, 9,
10, 10, 11, 11, 12, 12, 13, 13, 13, 13,
14, 14, 14, 14, 15, 15, 15, 15, 16, 16,
16, 16, 17, 17, 17, 17, 17, 17, 17, 17,
18, 18, 18, 18, 18, 18, 18, 18, 19, 19,
19, 19, 19, 19, 19, 19, 20, 20, 20, 20,
20, 20, 20, 20, 21, 21, 21, 21, 21, 21,
21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22, 22, 22, 22, 22, 22, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 29,
}
var offsetCodes = [256]uint32{
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
}
// offsetCodes14 are offsetCodes, but with 14 added.
var offsetCodes14 = [256]uint32{
14, 15, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21,
22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
}
type token uint32
type tokens struct {
extraHist [32]uint16 // codes 256->maxnumlit
offHist [32]uint16 // offset codes
litHist [256]uint16 // codes 0->255
nFilled int
n uint16 // Must be able to contain maxStoreBlockSize
tokens [maxStoreBlockSize + 1]token
}
func (t *tokens) Reset() {
if t.n == 0 {
return
}
t.n = 0
t.nFilled = 0
for i := range t.litHist[:] {
t.litHist[i] = 0
}
for i := range t.extraHist[:] {
t.extraHist[i] = 0
}
for i := range t.offHist[:] {
t.offHist[i] = 0
}
}
func (t *tokens) Fill() {
if t.n == 0 {
return
}
for i, v := range t.litHist[:] {
if v == 0 {
t.litHist[i] = 1
t.nFilled++
}
}
for i, v := range t.extraHist[:literalCount-256] {
if v == 0 {
t.nFilled++
t.extraHist[i] = 1
}
}
for i, v := range t.offHist[:offsetCodeCount] {
if v == 0 {
t.offHist[i] = 1
}
}
}
func indexTokens(in []token) tokens {
var t tokens
t.indexTokens(in)
return t
}
func (t *tokens) indexTokens(in []token) {
t.Reset()
for _, tok := range in {
if tok < matchType {
t.AddLiteral(tok.literal())
continue
}
t.AddMatch(uint32(tok.length()), tok.offset()&matchOffsetOnlyMask)
}
}
// emitLiteral writes a literal chunk and returns the number of bytes written.
func emitLiteral(dst *tokens, lit []byte) {
for _, v := range lit {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
func (t *tokens) AddLiteral(lit byte) {
t.tokens[t.n] = token(lit)
t.litHist[lit]++
t.n++
}
// from https://stackoverflow.com/a/28730362
func mFastLog2(val float32) float32 {
ux := int32(math.Float32bits(val))
log2 := (float32)(((ux >> 23) & 255) - 128)
ux &= -0x7f800001
ux += 127 << 23
uval := math.Float32frombits(uint32(ux))
log2 += ((-0.34484843)*uval+2.02466578)*uval - 0.67487759
return log2
}
// EstimatedBits will return an minimum size estimated by an *optimal*
// compression of the block.
// The size of the block
func (t *tokens) EstimatedBits() int {
shannon := float32(0)
bits := int(0)
nMatches := 0
total := int(t.n) + t.nFilled
if total > 0 {
invTotal := 1.0 / float32(total)
for _, v := range t.litHist[:] {
if v > 0 {
n := float32(v)
shannon += atLeastOne(-mFastLog2(n*invTotal)) * n
}
}
// Just add 15 for EOB
shannon += 15
for i, v := range t.extraHist[1 : literalCount-256] {
if v > 0 {
n := float32(v)
shannon += atLeastOne(-mFastLog2(n*invTotal)) * n
bits += int(lengthExtraBits[i&31]) * int(v)
nMatches += int(v)
}
}
}
if nMatches > 0 {
invTotal := 1.0 / float32(nMatches)
for i, v := range t.offHist[:offsetCodeCount] {
if v > 0 {
n := float32(v)
shannon += atLeastOne(-mFastLog2(n*invTotal)) * n
bits += int(offsetExtraBits[i&31]) * int(v)
}
}
}
return int(shannon) + bits
}
// AddMatch adds a match to the tokens.
// This function is very sensitive to inlining and right on the border.
func (t *tokens) AddMatch(xlength uint32, xoffset uint32) {
if debugDeflate {
if xlength >= maxMatchLength+baseMatchLength {
panic(fmt.Errorf("invalid length: %v", xlength))
}
if xoffset >= maxMatchOffset+baseMatchOffset {
panic(fmt.Errorf("invalid offset: %v", xoffset))
}
}
oCode := offsetCode(xoffset)
xoffset |= oCode << 16
t.extraHist[lengthCodes1[uint8(xlength)]]++
t.offHist[oCode&31]++
t.tokens[t.n] = token(matchType | xlength<<lengthShift | xoffset)
t.n++
}
// AddMatchLong adds a match to the tokens, potentially longer than max match length.
// Length should NOT have the base subtracted, only offset should.
func (t *tokens) AddMatchLong(xlength int32, xoffset uint32) {
if debugDeflate {
if xoffset >= maxMatchOffset+baseMatchOffset {
panic(fmt.Errorf("invalid offset: %v", xoffset))
}
}
oc := offsetCode(xoffset)
xoffset |= oc << 16
for xlength > 0 {
xl := xlength
if xl > 258 {
// We need to have at least baseMatchLength left over for next loop.
if xl > 258+baseMatchLength {
xl = 258
} else {
xl = 258 - baseMatchLength
}
}
xlength -= xl
xl -= baseMatchLength
t.extraHist[lengthCodes1[uint8(xl)]]++
t.offHist[oc&31]++
t.tokens[t.n] = token(matchType | uint32(xl)<<lengthShift | xoffset)
t.n++
}
}
func (t *tokens) AddEOB() {
t.tokens[t.n] = token(endBlockMarker)
t.extraHist[0]++
t.n++
}
func (t *tokens) Slice() []token {
return t.tokens[:t.n]
}
// VarInt returns the tokens as varint encoded bytes.
func (t *tokens) VarInt() []byte {
var b = make([]byte, binary.MaxVarintLen32*int(t.n))
var off int
for _, v := range t.tokens[:t.n] {
off += binary.PutUvarint(b[off:], uint64(v))
}
return b[:off]
}
// FromVarInt restores t to the varint encoded tokens provided.
// Any data in t is removed.
func (t *tokens) FromVarInt(b []byte) error {
var buf = bytes.NewReader(b)
var toks []token
for {
r, err := binary.ReadUvarint(buf)
if err == io.EOF {
break
}
if err != nil {
return err
}
toks = append(toks, token(r))
}
t.indexTokens(toks)
return nil
}
// Returns the type of a token
func (t token) typ() uint32 { return uint32(t) & typeMask }
// Returns the literal of a literal token
func (t token) literal() uint8 { return uint8(t) }
// Returns the extra offset of a match token
func (t token) offset() uint32 { return uint32(t) & offsetMask }
func (t token) length() uint8 { return uint8(t >> lengthShift) }
// Convert length to code.
func lengthCode(len uint8) uint8 { return lengthCodes[len] }
// Returns the offset code corresponding to a specific offset
func offsetCode(off uint32) uint32 {
if false {
if off < uint32(len(offsetCodes)) {
return offsetCodes[off&255]
} else if off>>7 < uint32(len(offsetCodes)) {
return offsetCodes[(off>>7)&255] + 14
} else {
return offsetCodes[(off>>14)&255] + 28
}
}
if off < uint32(len(offsetCodes)) {
return offsetCodes[uint8(off)]
}
return offsetCodes14[uint8(off>>7)]
}

349
vendor/github.com/klauspost/compress/gzip/gunzip.go generated vendored Normal file
View File

@ -0,0 +1,349 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package gzip implements reading and writing of gzip format compressed files,
// as specified in RFC 1952.
package gzip
import (
"bufio"
"compress/gzip"
"encoding/binary"
"hash/crc32"
"io"
"time"
"github.com/klauspost/compress/flate"
)
const (
gzipID1 = 0x1f
gzipID2 = 0x8b
gzipDeflate = 8
flagText = 1 << 0
flagHdrCrc = 1 << 1
flagExtra = 1 << 2
flagName = 1 << 3
flagComment = 1 << 4
)
var (
// ErrChecksum is returned when reading GZIP data that has an invalid checksum.
ErrChecksum = gzip.ErrChecksum
// ErrHeader is returned when reading GZIP data that has an invalid header.
ErrHeader = gzip.ErrHeader
)
var le = binary.LittleEndian
// noEOF converts io.EOF to io.ErrUnexpectedEOF.
func noEOF(err error) error {
if err == io.EOF {
return io.ErrUnexpectedEOF
}
return err
}
// The gzip file stores a header giving metadata about the compressed file.
// That header is exposed as the fields of the Writer and Reader structs.
//
// Strings must be UTF-8 encoded and may only contain Unicode code points
// U+0001 through U+00FF, due to limitations of the GZIP file format.
type Header struct {
Comment string // comment
Extra []byte // "extra data"
ModTime time.Time // modification time
Name string // file name
OS byte // operating system type
}
// A Reader is an io.Reader that can be read to retrieve
// uncompressed data from a gzip-format compressed file.
//
// In general, a gzip file can be a concatenation of gzip files,
// each with its own header. Reads from the Reader
// return the concatenation of the uncompressed data of each.
// Only the first header is recorded in the Reader fields.
//
// Gzip files store a length and checksum of the uncompressed data.
// The Reader will return a ErrChecksum when Read
// reaches the end of the uncompressed data if it does not
// have the expected length or checksum. Clients should treat data
// returned by Read as tentative until they receive the io.EOF
// marking the end of the data.
type Reader struct {
Header // valid after NewReader or Reader.Reset
r flate.Reader
br *bufio.Reader
decompressor io.ReadCloser
digest uint32 // CRC-32, IEEE polynomial (section 8)
size uint32 // Uncompressed size (section 2.3.1)
buf [512]byte
err error
multistream bool
}
// NewReader creates a new Reader reading the given reader.
// If r does not also implement io.ByteReader,
// the decompressor may read more data than necessary from r.
//
// It is the caller's responsibility to call Close on the Reader when done.
//
// The Reader.Header fields will be valid in the Reader returned.
func NewReader(r io.Reader) (*Reader, error) {
z := new(Reader)
if err := z.Reset(r); err != nil {
return nil, err
}
return z, nil
}
// Reset discards the Reader z's state and makes it equivalent to the
// result of its original state from NewReader, but reading from r instead.
// This permits reusing a Reader rather than allocating a new one.
func (z *Reader) Reset(r io.Reader) error {
*z = Reader{
decompressor: z.decompressor,
multistream: true,
}
if rr, ok := r.(flate.Reader); ok {
z.r = rr
} else {
// Reuse if we can.
if z.br != nil {
z.br.Reset(r)
} else {
z.br = bufio.NewReader(r)
}
z.r = z.br
}
z.Header, z.err = z.readHeader()
return z.err
}
// Multistream controls whether the reader supports multistream files.
//
// If enabled (the default), the Reader expects the input to be a sequence
// of individually gzipped data streams, each with its own header and
// trailer, ending at EOF. The effect is that the concatenation of a sequence
// of gzipped files is treated as equivalent to the gzip of the concatenation
// of the sequence. This is standard behavior for gzip readers.
//
// Calling Multistream(false) disables this behavior; disabling the behavior
// can be useful when reading file formats that distinguish individual gzip
// data streams or mix gzip data streams with other data streams.
// In this mode, when the Reader reaches the end of the data stream,
// Read returns io.EOF. If the underlying reader implements io.ByteReader,
// it will be left positioned just after the gzip stream.
// To start the next stream, call z.Reset(r) followed by z.Multistream(false).
// If there is no next stream, z.Reset(r) will return io.EOF.
func (z *Reader) Multistream(ok bool) {
z.multistream = ok
}
// readString reads a NUL-terminated string from z.r.
// It treats the bytes read as being encoded as ISO 8859-1 (Latin-1) and
// will output a string encoded using UTF-8.
// This method always updates z.digest with the data read.
func (z *Reader) readString() (string, error) {
var err error
needConv := false
for i := 0; ; i++ {
if i >= len(z.buf) {
return "", ErrHeader
}
z.buf[i], err = z.r.ReadByte()
if err != nil {
return "", err
}
if z.buf[i] > 0x7f {
needConv = true
}
if z.buf[i] == 0 {
// Digest covers the NUL terminator.
z.digest = crc32.Update(z.digest, crc32.IEEETable, z.buf[:i+1])
// Strings are ISO 8859-1, Latin-1 (RFC 1952, section 2.3.1).
if needConv {
s := make([]rune, 0, i)
for _, v := range z.buf[:i] {
s = append(s, rune(v))
}
return string(s), nil
}
return string(z.buf[:i]), nil
}
}
}
// readHeader reads the GZIP header according to section 2.3.1.
// This method does not set z.err.
func (z *Reader) readHeader() (hdr Header, err error) {
if _, err = io.ReadFull(z.r, z.buf[:10]); err != nil {
// RFC 1952, section 2.2, says the following:
// A gzip file consists of a series of "members" (compressed data sets).
//
// Other than this, the specification does not clarify whether a
// "series" is defined as "one or more" or "zero or more". To err on the
// side of caution, Go interprets this to mean "zero or more".
// Thus, it is okay to return io.EOF here.
return hdr, err
}
if z.buf[0] != gzipID1 || z.buf[1] != gzipID2 || z.buf[2] != gzipDeflate {
return hdr, ErrHeader
}
flg := z.buf[3]
hdr.ModTime = time.Unix(int64(le.Uint32(z.buf[4:8])), 0)
// z.buf[8] is XFL and is currently ignored.
hdr.OS = z.buf[9]
z.digest = crc32.ChecksumIEEE(z.buf[:10])
if flg&flagExtra != 0 {
if _, err = io.ReadFull(z.r, z.buf[:2]); err != nil {
return hdr, noEOF(err)
}
z.digest = crc32.Update(z.digest, crc32.IEEETable, z.buf[:2])
data := make([]byte, le.Uint16(z.buf[:2]))
if _, err = io.ReadFull(z.r, data); err != nil {
return hdr, noEOF(err)
}
z.digest = crc32.Update(z.digest, crc32.IEEETable, data)
hdr.Extra = data
}
var s string
if flg&flagName != 0 {
if s, err = z.readString(); err != nil {
return hdr, err
}
hdr.Name = s
}
if flg&flagComment != 0 {
if s, err = z.readString(); err != nil {
return hdr, err
}
hdr.Comment = s
}
if flg&flagHdrCrc != 0 {
if _, err = io.ReadFull(z.r, z.buf[:2]); err != nil {
return hdr, noEOF(err)
}
digest := le.Uint16(z.buf[:2])
if digest != uint16(z.digest) {
return hdr, ErrHeader
}
}
z.digest = 0
if z.decompressor == nil {
z.decompressor = flate.NewReader(z.r)
} else {
z.decompressor.(flate.Resetter).Reset(z.r, nil)
}
return hdr, nil
}
// Read implements io.Reader, reading uncompressed bytes from its underlying Reader.
func (z *Reader) Read(p []byte) (n int, err error) {
if z.err != nil {
return 0, z.err
}
for n == 0 {
n, z.err = z.decompressor.Read(p)
z.digest = crc32.Update(z.digest, crc32.IEEETable, p[:n])
z.size += uint32(n)
if z.err != io.EOF {
// In the normal case we return here.
return n, z.err
}
// Finished file; check checksum and size.
if _, err := io.ReadFull(z.r, z.buf[:8]); err != nil {
z.err = noEOF(err)
return n, z.err
}
digest := le.Uint32(z.buf[:4])
size := le.Uint32(z.buf[4:8])
if digest != z.digest || size != z.size {
z.err = ErrChecksum
return n, z.err
}
z.digest, z.size = 0, 0
// File is ok; check if there is another.
if !z.multistream {
return n, io.EOF
}
z.err = nil // Remove io.EOF
if _, z.err = z.readHeader(); z.err != nil {
return n, z.err
}
}
return n, nil
}
// Support the io.WriteTo interface for io.Copy and friends.
func (z *Reader) WriteTo(w io.Writer) (int64, error) {
total := int64(0)
crcWriter := crc32.NewIEEE()
for {
if z.err != nil {
if z.err == io.EOF {
return total, nil
}
return total, z.err
}
// We write both to output and digest.
mw := io.MultiWriter(w, crcWriter)
n, err := z.decompressor.(io.WriterTo).WriteTo(mw)
total += n
z.size += uint32(n)
if err != nil {
z.err = err
return total, z.err
}
// Finished file; check checksum + size.
if _, err := io.ReadFull(z.r, z.buf[0:8]); err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
z.err = err
return total, err
}
z.digest = crcWriter.Sum32()
digest := le.Uint32(z.buf[:4])
size := le.Uint32(z.buf[4:8])
if digest != z.digest || size != z.size {
z.err = ErrChecksum
return total, z.err
}
z.digest, z.size = 0, 0
// File is ok; check if there is another.
if !z.multistream {
return total, nil
}
crcWriter.Reset()
z.err = nil // Remove io.EOF
if _, z.err = z.readHeader(); z.err != nil {
if z.err == io.EOF {
return total, nil
}
return total, z.err
}
}
}
// Close closes the Reader. It does not close the underlying io.Reader.
// In order for the GZIP checksum to be verified, the reader must be
// fully consumed until the io.EOF.
func (z *Reader) Close() error { return z.decompressor.Close() }

269
vendor/github.com/klauspost/compress/gzip/gzip.go generated vendored Normal file
View File

@ -0,0 +1,269 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gzip
import (
"errors"
"fmt"
"hash/crc32"
"io"
"github.com/klauspost/compress/flate"
)
// These constants are copied from the flate package, so that code that imports
// "compress/gzip" does not also have to import "compress/flate".
const (
NoCompression = flate.NoCompression
BestSpeed = flate.BestSpeed
BestCompression = flate.BestCompression
DefaultCompression = flate.DefaultCompression
ConstantCompression = flate.ConstantCompression
HuffmanOnly = flate.HuffmanOnly
// StatelessCompression will do compression but without maintaining any state
// between Write calls.
// There will be no memory kept between Write calls,
// but compression and speed will be suboptimal.
// Because of this, the size of actual Write calls will affect output size.
StatelessCompression = -3
)
// A Writer is an io.WriteCloser.
// Writes to a Writer are compressed and written to w.
type Writer struct {
Header // written at first call to Write, Flush, or Close
w io.Writer
level int
err error
compressor *flate.Writer
digest uint32 // CRC-32, IEEE polynomial (section 8)
size uint32 // Uncompressed size (section 2.3.1)
wroteHeader bool
closed bool
buf [10]byte
}
// NewWriter returns a new Writer.
// Writes to the returned writer are compressed and written to w.
//
// It is the caller's responsibility to call Close on the WriteCloser when done.
// Writes may be buffered and not flushed until Close.
//
// Callers that wish to set the fields in Writer.Header must do so before
// the first call to Write, Flush, or Close.
func NewWriter(w io.Writer) *Writer {
z, _ := NewWriterLevel(w, DefaultCompression)
return z
}
// NewWriterLevel is like NewWriter but specifies the compression level instead
// of assuming DefaultCompression.
//
// The compression level can be DefaultCompression, NoCompression, or any
// integer value between BestSpeed and BestCompression inclusive. The error
// returned will be nil if the level is valid.
func NewWriterLevel(w io.Writer, level int) (*Writer, error) {
if level < StatelessCompression || level > BestCompression {
return nil, fmt.Errorf("gzip: invalid compression level: %d", level)
}
z := new(Writer)
z.init(w, level)
return z, nil
}
func (z *Writer) init(w io.Writer, level int) {
compressor := z.compressor
if level != StatelessCompression {
if compressor != nil {
compressor.Reset(w)
}
}
*z = Writer{
Header: Header{
OS: 255, // unknown
},
w: w,
level: level,
compressor: compressor,
}
}
// Reset discards the Writer z's state and makes it equivalent to the
// result of its original state from NewWriter or NewWriterLevel, but
// writing to w instead. This permits reusing a Writer rather than
// allocating a new one.
func (z *Writer) Reset(w io.Writer) {
z.init(w, z.level)
}
// writeBytes writes a length-prefixed byte slice to z.w.
func (z *Writer) writeBytes(b []byte) error {
if len(b) > 0xffff {
return errors.New("gzip.Write: Extra data is too large")
}
le.PutUint16(z.buf[:2], uint16(len(b)))
_, err := z.w.Write(z.buf[:2])
if err != nil {
return err
}
_, err = z.w.Write(b)
return err
}
// writeString writes a UTF-8 string s in GZIP's format to z.w.
// GZIP (RFC 1952) specifies that strings are NUL-terminated ISO 8859-1 (Latin-1).
func (z *Writer) writeString(s string) (err error) {
// GZIP stores Latin-1 strings; error if non-Latin-1; convert if non-ASCII.
needconv := false
for _, v := range s {
if v == 0 || v > 0xff {
return errors.New("gzip.Write: non-Latin-1 header string")
}
if v > 0x7f {
needconv = true
}
}
if needconv {
b := make([]byte, 0, len(s))
for _, v := range s {
b = append(b, byte(v))
}
_, err = z.w.Write(b)
} else {
_, err = io.WriteString(z.w, s)
}
if err != nil {
return err
}
// GZIP strings are NUL-terminated.
z.buf[0] = 0
_, err = z.w.Write(z.buf[:1])
return err
}
// Write writes a compressed form of p to the underlying io.Writer. The
// compressed bytes are not necessarily flushed until the Writer is closed.
func (z *Writer) Write(p []byte) (int, error) {
if z.err != nil {
return 0, z.err
}
var n int
// Write the GZIP header lazily.
if !z.wroteHeader {
z.wroteHeader = true
z.buf[0] = gzipID1
z.buf[1] = gzipID2
z.buf[2] = gzipDeflate
z.buf[3] = 0
if z.Extra != nil {
z.buf[3] |= 0x04
}
if z.Name != "" {
z.buf[3] |= 0x08
}
if z.Comment != "" {
z.buf[3] |= 0x10
}
le.PutUint32(z.buf[4:8], uint32(z.ModTime.Unix()))
if z.level == BestCompression {
z.buf[8] = 2
} else if z.level == BestSpeed {
z.buf[8] = 4
} else {
z.buf[8] = 0
}
z.buf[9] = z.OS
n, z.err = z.w.Write(z.buf[:10])
if z.err != nil {
return n, z.err
}
if z.Extra != nil {
z.err = z.writeBytes(z.Extra)
if z.err != nil {
return n, z.err
}
}
if z.Name != "" {
z.err = z.writeString(z.Name)
if z.err != nil {
return n, z.err
}
}
if z.Comment != "" {
z.err = z.writeString(z.Comment)
if z.err != nil {
return n, z.err
}
}
if z.compressor == nil && z.level != StatelessCompression {
z.compressor, _ = flate.NewWriter(z.w, z.level)
}
}
z.size += uint32(len(p))
z.digest = crc32.Update(z.digest, crc32.IEEETable, p)
if z.level == StatelessCompression {
return len(p), flate.StatelessDeflate(z.w, p, false, nil)
}
n, z.err = z.compressor.Write(p)
return n, z.err
}
// Flush flushes any pending compressed data to the underlying writer.
//
// It is useful mainly in compressed network protocols, to ensure that
// a remote reader has enough data to reconstruct a packet. Flush does
// not return until the data has been written. If the underlying
// writer returns an error, Flush returns that error.
//
// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
func (z *Writer) Flush() error {
if z.err != nil {
return z.err
}
if z.closed || z.level == StatelessCompression {
return nil
}
if !z.wroteHeader {
z.Write(nil)
if z.err != nil {
return z.err
}
}
z.err = z.compressor.Flush()
return z.err
}
// Close closes the Writer, flushing any unwritten data to the underlying
// io.Writer, but does not close the underlying io.Writer.
func (z *Writer) Close() error {
if z.err != nil {
return z.err
}
if z.closed {
return nil
}
z.closed = true
if !z.wroteHeader {
z.Write(nil)
if z.err != nil {
return z.err
}
}
if z.level == StatelessCompression {
z.err = flate.StatelessDeflate(z.w, nil, true, nil)
} else {
z.err = z.compressor.Close()
}
if z.err != nil {
return z.err
}
le.PutUint32(z.buf[:4], z.digest)
le.PutUint32(z.buf[4:8], z.size)
_, z.err = z.w.Write(z.buf[:8])
return z.err
}

17
vendor/github.com/klauspost/compress/snappy/README.md generated vendored Normal file
View File

@ -0,0 +1,17 @@
# snappy
The Snappy compression format in the Go programming language.
This is a drop-in replacement for `github.com/golang/snappy`.
It provides a full, compatible replacement of the Snappy package by simply changing imports.
See [Snappy Compatibility](https://github.com/klauspost/compress/tree/master/s2#snappy-compatibility) in the S2 documentation.
"Better" compression mode is used. For buffered streams concurrent compression is used.
For more options use the [s2 package](https://pkg.go.dev/github.com/klauspost/compress/s2).
# usage
Replace imports `github.com/golang/snappy` with `github.com/klauspost/compress/snappy`.

60
vendor/github.com/klauspost/compress/snappy/decode.go generated vendored Normal file
View File

@ -0,0 +1,60 @@
// Copyright 2011 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package snappy
import (
"io"
"github.com/klauspost/compress/s2"
)
var (
// ErrCorrupt reports that the input is invalid.
ErrCorrupt = s2.ErrCorrupt
// ErrTooLarge reports that the uncompressed length is too large.
ErrTooLarge = s2.ErrTooLarge
// ErrUnsupported reports that the input isn't supported.
ErrUnsupported = s2.ErrUnsupported
)
const (
// maxBlockSize is the maximum size of the input to encodeBlock. It is not
// part of the wire format per se, but some parts of the encoder assume
// that an offset fits into a uint16.
//
// Also, for the framing format (Writer type instead of Encode function),
// https://github.com/google/snappy/blob/master/framing_format.txt says
// that "the uncompressed data in a chunk must be no longer than 65536
// bytes".
maxBlockSize = 65536
)
// DecodedLen returns the length of the decoded block.
func DecodedLen(src []byte) (int, error) {
return s2.DecodedLen(src)
}
// Decode returns the decoded form of src. The returned slice may be a sub-
// slice of dst if dst was large enough to hold the entire decoded block.
// Otherwise, a newly allocated slice will be returned.
//
// The dst and src must not overlap. It is valid to pass a nil dst.
//
// Decode handles the Snappy block format, not the Snappy stream format.
func Decode(dst, src []byte) ([]byte, error) {
return s2.Decode(dst, src)
}
// NewReader returns a new Reader that decompresses from r, using the framing
// format described at
// https://github.com/google/snappy/blob/master/framing_format.txt
func NewReader(r io.Reader) *Reader {
return s2.NewReader(r, s2.ReaderMaxBlockSize(maxBlockSize))
}
// Reader is an io.Reader that can read Snappy-compressed bytes.
//
// Reader handles the Snappy stream format, not the Snappy block format.
type Reader = s2.Reader

59
vendor/github.com/klauspost/compress/snappy/encode.go generated vendored Normal file
View File

@ -0,0 +1,59 @@
// Copyright 2011 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package snappy
import (
"io"
"github.com/klauspost/compress/s2"
)
// Encode returns the encoded form of src. The returned slice may be a sub-
// slice of dst if dst was large enough to hold the entire encoded block.
// Otherwise, a newly allocated slice will be returned.
//
// The dst and src must not overlap. It is valid to pass a nil dst.
//
// Encode handles the Snappy block format, not the Snappy stream format.
func Encode(dst, src []byte) []byte {
return s2.EncodeSnappyBetter(dst, src)
}
// MaxEncodedLen returns the maximum length of a snappy block, given its
// uncompressed length.
//
// It will return a negative value if srcLen is too large to encode.
func MaxEncodedLen(srcLen int) int {
return s2.MaxEncodedLen(srcLen)
}
// NewWriter returns a new Writer that compresses to w.
//
// The Writer returned does not buffer writes. There is no need to Flush or
// Close such a Writer.
//
// Deprecated: the Writer returned is not suitable for many small writes, only
// for few large writes. Use NewBufferedWriter instead, which is efficient
// regardless of the frequency and shape of the writes, and remember to Close
// that Writer when done.
func NewWriter(w io.Writer) *Writer {
return s2.NewWriter(w, s2.WriterSnappyCompat(), s2.WriterBetterCompression(), s2.WriterFlushOnWrite(), s2.WriterConcurrency(1))
}
// NewBufferedWriter returns a new Writer that compresses to w, using the
// framing format described at
// https://github.com/google/snappy/blob/master/framing_format.txt
//
// The Writer returned buffers writes. Users must call Close to guarantee all
// data has been forwarded to the underlying io.Writer. They may also call
// Flush zero or more times before calling Close.
func NewBufferedWriter(w io.Writer) *Writer {
return s2.NewWriter(w, s2.WriterSnappyCompat(), s2.WriterBetterCompression())
}
// Writer is an io.Writer that can write Snappy-compressed bytes.
//
// Writer handles the Snappy stream format, not the Snappy block format.
type Writer = s2.Writer

View File

@ -17,11 +17,7 @@
//
// The canonical, C++ implementation is at https://github.com/google/snappy and
// it only implements the block format.
package snappy // import "github.com/golang/snappy"
import (
"hash/crc32"
)
package snappy
/*
Each encoded block begins with the varint-encoded length of the decoded data,
@ -48,51 +44,3 @@ Lempel-Ziv compression algorithms. In particular:
[1, 65). The length is 1 + m. The offset is the little-endian unsigned
integer denoted by the next 4 bytes.
*/
const (
tagLiteral = 0x00
tagCopy1 = 0x01
tagCopy2 = 0x02
tagCopy4 = 0x03
)
const (
checksumSize = 4
chunkHeaderSize = 4
magicChunk = "\xff\x06\x00\x00" + magicBody
magicBody = "sNaPpY"
// maxBlockSize is the maximum size of the input to encodeBlock. It is not
// part of the wire format per se, but some parts of the encoder assume
// that an offset fits into a uint16.
//
// Also, for the framing format (Writer type instead of Encode function),
// https://github.com/google/snappy/blob/master/framing_format.txt says
// that "the uncompressed data in a chunk must be no longer than 65536
// bytes".
maxBlockSize = 65536
// maxEncodedLenOfMaxBlockSize equals MaxEncodedLen(maxBlockSize), but is
// hard coded to be a const instead of a variable, so that obufLen can also
// be a const. Their equivalence is confirmed by
// TestMaxEncodedLenOfMaxBlockSize.
maxEncodedLenOfMaxBlockSize = 76490
obufHeaderLen = len(magicChunk) + checksumSize + chunkHeaderSize
obufLen = obufHeaderLen + maxEncodedLenOfMaxBlockSize
)
const (
chunkTypeCompressedData = 0x00
chunkTypeUncompressedData = 0x01
chunkTypePadding = 0xfe
chunkTypeStreamIdentifier = 0xff
)
var crcTable = crc32.MakeTable(crc32.Castagnoli)
// crc implements the checksum specified in section 3 of
// https://github.com/google/snappy/blob/master/framing_format.txt
func crc(b []byte) uint32 {
c := crc32.Update(0, crcTable, b)
return uint32(c>>15|c<<17) + 0xa282ead8
}

183
vendor/github.com/klauspost/compress/zlib/reader.go generated vendored Normal file
View File

@ -0,0 +1,183 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package zlib implements reading and writing of zlib format compressed data,
as specified in RFC 1950.
The implementation provides filters that uncompress during reading
and compress during writing. For example, to write compressed data
to a buffer:
var b bytes.Buffer
w := zlib.NewWriter(&b)
w.Write([]byte("hello, world\n"))
w.Close()
and to read that data back:
r, err := zlib.NewReader(&b)
io.Copy(os.Stdout, r)
r.Close()
*/
package zlib
import (
"bufio"
"compress/zlib"
"hash"
"hash/adler32"
"io"
"github.com/klauspost/compress/flate"
)
const zlibDeflate = 8
var (
// ErrChecksum is returned when reading ZLIB data that has an invalid checksum.
ErrChecksum = zlib.ErrChecksum
// ErrDictionary is returned when reading ZLIB data that has an invalid dictionary.
ErrDictionary = zlib.ErrDictionary
// ErrHeader is returned when reading ZLIB data that has an invalid header.
ErrHeader = zlib.ErrHeader
)
type reader struct {
r flate.Reader
decompressor io.ReadCloser
digest hash.Hash32
err error
scratch [4]byte
}
// Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
// to switch to a new underlying Reader. This permits reusing a ReadCloser
// instead of allocating a new one.
type Resetter interface {
// Reset discards any buffered data and resets the Resetter as if it was
// newly initialized with the given reader.
Reset(r io.Reader, dict []byte) error
}
// NewReader creates a new ReadCloser.
// Reads from the returned ReadCloser read and decompress data from r.
// If r does not implement io.ByteReader, the decompressor may read more
// data than necessary from r.
// It is the caller's responsibility to call Close on the ReadCloser when done.
//
// The ReadCloser returned by NewReader also implements Resetter.
func NewReader(r io.Reader) (io.ReadCloser, error) {
return NewReaderDict(r, nil)
}
// NewReaderDict is like NewReader but uses a preset dictionary.
// NewReaderDict ignores the dictionary if the compressed data does not refer to it.
// If the compressed data refers to a different dictionary, NewReaderDict returns ErrDictionary.
//
// The ReadCloser returned by NewReaderDict also implements Resetter.
func NewReaderDict(r io.Reader, dict []byte) (io.ReadCloser, error) {
z := new(reader)
err := z.Reset(r, dict)
if err != nil {
return nil, err
}
return z, nil
}
func (z *reader) Read(p []byte) (int, error) {
if z.err != nil {
return 0, z.err
}
var n int
n, z.err = z.decompressor.Read(p)
z.digest.Write(p[0:n])
if z.err != io.EOF {
// In the normal case we return here.
return n, z.err
}
// Finished file; check checksum.
if _, err := io.ReadFull(z.r, z.scratch[0:4]); err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
z.err = err
return n, z.err
}
// ZLIB (RFC 1950) is big-endian, unlike GZIP (RFC 1952).
checksum := uint32(z.scratch[0])<<24 | uint32(z.scratch[1])<<16 | uint32(z.scratch[2])<<8 | uint32(z.scratch[3])
if checksum != z.digest.Sum32() {
z.err = ErrChecksum
return n, z.err
}
return n, io.EOF
}
// Calling Close does not close the wrapped io.Reader originally passed to NewReader.
// In order for the ZLIB checksum to be verified, the reader must be
// fully consumed until the io.EOF.
func (z *reader) Close() error {
if z.err != nil && z.err != io.EOF {
return z.err
}
z.err = z.decompressor.Close()
return z.err
}
func (z *reader) Reset(r io.Reader, dict []byte) error {
*z = reader{decompressor: z.decompressor, digest: z.digest}
if fr, ok := r.(flate.Reader); ok {
z.r = fr
} else {
z.r = bufio.NewReader(r)
}
// Read the header (RFC 1950 section 2.2.).
_, z.err = io.ReadFull(z.r, z.scratch[0:2])
if z.err != nil {
if z.err == io.EOF {
z.err = io.ErrUnexpectedEOF
}
return z.err
}
h := uint(z.scratch[0])<<8 | uint(z.scratch[1])
if (z.scratch[0]&0x0f != zlibDeflate) || (h%31 != 0) {
z.err = ErrHeader
return z.err
}
haveDict := z.scratch[1]&0x20 != 0
if haveDict {
_, z.err = io.ReadFull(z.r, z.scratch[0:4])
if z.err != nil {
if z.err == io.EOF {
z.err = io.ErrUnexpectedEOF
}
return z.err
}
checksum := uint32(z.scratch[0])<<24 | uint32(z.scratch[1])<<16 | uint32(z.scratch[2])<<8 | uint32(z.scratch[3])
if checksum != adler32.Checksum(dict) {
z.err = ErrDictionary
return z.err
}
}
if z.decompressor == nil {
if haveDict {
z.decompressor = flate.NewReaderDict(z.r, dict)
} else {
z.decompressor = flate.NewReader(z.r)
}
} else {
z.decompressor.(flate.Resetter).Reset(z.r, dict)
}
if z.digest != nil {
z.digest.Reset()
} else {
z.digest = adler32.New()
}
return nil
}

201
vendor/github.com/klauspost/compress/zlib/writer.go generated vendored Normal file
View File

@ -0,0 +1,201 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package zlib
import (
"fmt"
"hash"
"hash/adler32"
"io"
"github.com/klauspost/compress/flate"
)
// These constants are copied from the flate package, so that code that imports
// "compress/zlib" does not also have to import "compress/flate".
const (
NoCompression = flate.NoCompression
BestSpeed = flate.BestSpeed
BestCompression = flate.BestCompression
DefaultCompression = flate.DefaultCompression
ConstantCompression = flate.ConstantCompression
HuffmanOnly = flate.HuffmanOnly
)
// A Writer takes data written to it and writes the compressed
// form of that data to an underlying writer (see NewWriter).
type Writer struct {
w io.Writer
level int
dict []byte
compressor *flate.Writer
digest hash.Hash32
err error
scratch [4]byte
wroteHeader bool
}
// NewWriter creates a new Writer.
// Writes to the returned Writer are compressed and written to w.
//
// It is the caller's responsibility to call Close on the WriteCloser when done.
// Writes may be buffered and not flushed until Close.
func NewWriter(w io.Writer) *Writer {
z, _ := NewWriterLevelDict(w, DefaultCompression, nil)
return z
}
// NewWriterLevel is like NewWriter but specifies the compression level instead
// of assuming DefaultCompression.
//
// The compression level can be DefaultCompression, NoCompression, HuffmanOnly
// or any integer value between BestSpeed and BestCompression inclusive.
// The error returned will be nil if the level is valid.
func NewWriterLevel(w io.Writer, level int) (*Writer, error) {
return NewWriterLevelDict(w, level, nil)
}
// NewWriterLevelDict is like NewWriterLevel but specifies a dictionary to
// compress with.
//
// The dictionary may be nil. If not, its contents should not be modified until
// the Writer is closed.
func NewWriterLevelDict(w io.Writer, level int, dict []byte) (*Writer, error) {
if level < HuffmanOnly || level > BestCompression {
return nil, fmt.Errorf("zlib: invalid compression level: %d", level)
}
return &Writer{
w: w,
level: level,
dict: dict,
}, nil
}
// Reset clears the state of the Writer z such that it is equivalent to its
// initial state from NewWriterLevel or NewWriterLevelDict, but instead writing
// to w.
func (z *Writer) Reset(w io.Writer) {
z.w = w
// z.level and z.dict left unchanged.
if z.compressor != nil {
z.compressor.Reset(w)
}
if z.digest != nil {
z.digest.Reset()
}
z.err = nil
z.scratch = [4]byte{}
z.wroteHeader = false
}
// writeHeader writes the ZLIB header.
func (z *Writer) writeHeader() (err error) {
z.wroteHeader = true
// ZLIB has a two-byte header (as documented in RFC 1950).
// The first four bits is the CINFO (compression info), which is 7 for the default deflate window size.
// The next four bits is the CM (compression method), which is 8 for deflate.
z.scratch[0] = 0x78
// The next two bits is the FLEVEL (compression level). The four values are:
// 0=fastest, 1=fast, 2=default, 3=best.
// The next bit, FDICT, is set if a dictionary is given.
// The final five FCHECK bits form a mod-31 checksum.
switch z.level {
case -2, 0, 1:
z.scratch[1] = 0 << 6
case 2, 3, 4, 5:
z.scratch[1] = 1 << 6
case 6, -1:
z.scratch[1] = 2 << 6
case 7, 8, 9:
z.scratch[1] = 3 << 6
default:
panic("unreachable")
}
if z.dict != nil {
z.scratch[1] |= 1 << 5
}
z.scratch[1] += uint8(31 - (uint16(z.scratch[0])<<8+uint16(z.scratch[1]))%31)
if _, err = z.w.Write(z.scratch[0:2]); err != nil {
return err
}
if z.dict != nil {
// The next four bytes are the Adler-32 checksum of the dictionary.
checksum := adler32.Checksum(z.dict)
z.scratch[0] = uint8(checksum >> 24)
z.scratch[1] = uint8(checksum >> 16)
z.scratch[2] = uint8(checksum >> 8)
z.scratch[3] = uint8(checksum >> 0)
if _, err = z.w.Write(z.scratch[0:4]); err != nil {
return err
}
}
if z.compressor == nil {
// Initialize deflater unless the Writer is being reused
// after a Reset call.
z.compressor, err = flate.NewWriterDict(z.w, z.level, z.dict)
if err != nil {
return err
}
z.digest = adler32.New()
}
return nil
}
// Write writes a compressed form of p to the underlying io.Writer. The
// compressed bytes are not necessarily flushed until the Writer is closed or
// explicitly flushed.
func (z *Writer) Write(p []byte) (n int, err error) {
if !z.wroteHeader {
z.err = z.writeHeader()
}
if z.err != nil {
return 0, z.err
}
if len(p) == 0 {
return 0, nil
}
n, err = z.compressor.Write(p)
if err != nil {
z.err = err
return
}
z.digest.Write(p)
return
}
// Flush flushes the Writer to its underlying io.Writer.
func (z *Writer) Flush() error {
if !z.wroteHeader {
z.err = z.writeHeader()
}
if z.err != nil {
return z.err
}
z.err = z.compressor.Flush()
return z.err
}
// Close closes the Writer, flushing any unwritten data to the underlying
// io.Writer, but does not close the underlying io.Writer.
func (z *Writer) Close() error {
if !z.wroteHeader {
z.err = z.writeHeader()
}
if z.err != nil {
return z.err
}
z.err = z.compressor.Close()
if z.err != nil {
return z.err
}
checksum := z.digest.Sum32()
// ZLIB (RFC 1950) is big-endian, unlike GZIP (RFC 1952).
z.scratch[0] = uint8(checksum >> 24)
z.scratch[1] = uint8(checksum >> 16)
z.scratch[2] = uint8(checksum >> 8)
z.scratch[3] = uint8(checksum >> 0)
_, z.err = z.w.Write(z.scratch[0:4])
return z.err
}

View File

@ -84,6 +84,12 @@ type UploadInfo struct {
// not to be confused with `Expires` HTTP header.
Expiration time.Time
ExpirationRuleID string
// Verified checksum values, if any.
ChecksumCRC32 string
ChecksumCRC32C string
ChecksumSHA1 string
ChecksumSHA256 string
}
// RestoreInfo contains information of the restore operation of an archived object
@ -148,6 +154,12 @@ type ObjectInfo struct {
Restore *RestoreInfo
// Checksum values
ChecksumCRC32 string
ChecksumCRC32C string
ChecksumSHA1 string
ChecksumSHA256 string
// Error
Err error `json:"-"`
}

View File

@ -38,6 +38,12 @@ type GetObjectOptions struct {
ServerSideEncryption encrypt.ServerSide
VersionID string
PartNumber int
// Include any checksums, if object was uploaded with checksum.
// For multipart objects this is a checksum of part checksums.
// https://docs.aws.amazon.com/AmazonS3/latest/userguide/checking-object-integrity.html
Checksum bool
// To be not used by external applications
Internal AdvancedGetOptions
}
@ -60,6 +66,9 @@ func (o GetObjectOptions) Header() http.Header {
if o.Internal.ReplicationProxyRequest != "" {
headers.Set(minIOBucketReplicationProxyRequest, o.Internal.ReplicationProxyRequest)
}
if o.Checksum {
headers.Set("x-amz-checksum-mode", "ENABLED")
}
return headers
}

View File

@ -24,6 +24,7 @@ import (
"encoding/hex"
"encoding/xml"
"fmt"
"hash/crc32"
"io"
"io/ioutil"
"net/http"
@ -79,11 +80,23 @@ func (c *Client) putObjectMultipartNoStream(ctx context.Context, bucketName, obj
return UploadInfo{}, err
}
// Choose hash algorithms to be calculated by hashCopyN,
// avoid sha256 with non-v4 signature request or
// HTTPS connection.
hashAlgos, hashSums := c.hashMaterials(opts.SendContentMd5, !opts.DisableContentSha256)
if len(hashSums) == 0 {
if opts.UserMetadata == nil {
opts.UserMetadata = make(map[string]string, 1)
}
opts.UserMetadata["X-Amz-Checksum-Algorithm"] = "CRC32C"
}
// Initiate a new multipart upload.
uploadID, err := c.newUploadID(ctx, bucketName, objectName, opts)
if err != nil {
return UploadInfo{}, err
}
delete(opts.UserMetadata, "X-Amz-Checksum-Algorithm")
defer func() {
if err != nil {
@ -100,12 +113,12 @@ func (c *Client) putObjectMultipartNoStream(ctx context.Context, bucketName, obj
// Create a buffer.
buf := make([]byte, partSize)
// Create checksums
// CRC32C is ~50% faster on AMD64 @ 30GB/s
var crcBytes []byte
customHeader := make(http.Header)
crc := crc32.New(crc32.MakeTable(crc32.Castagnoli))
for partNumber <= totalPartsCount {
// Choose hash algorithms to be calculated by hashCopyN,
// avoid sha256 with non-v4 signature request or
// HTTPS connection.
hashAlgos, hashSums := c.hashMaterials(opts.SendContentMd5, !opts.DisableContentSha256)
length, rErr := readFull(reader, buf)
if rErr == io.EOF && partNumber > 1 {
break
@ -131,18 +144,23 @@ func (c *Client) putObjectMultipartNoStream(ctx context.Context, bucketName, obj
md5Base64 string
sha256Hex string
)
if hashSums["md5"] != nil {
md5Base64 = base64.StdEncoding.EncodeToString(hashSums["md5"])
}
if hashSums["sha256"] != nil {
sha256Hex = hex.EncodeToString(hashSums["sha256"])
}
if len(hashSums) == 0 {
crc.Reset()
crc.Write(buf[:length])
cSum := crc.Sum(nil)
customHeader.Set("x-amz-checksum-crc32c", base64.StdEncoding.EncodeToString(cSum))
crcBytes = append(crcBytes, cSum...)
}
// Proceed to upload the part.
objPart, uerr := c.uploadPart(ctx, bucketName, objectName, uploadID, rd, partNumber,
md5Base64, sha256Hex, int64(length),
opts.ServerSideEncryption,
!opts.DisableContentSha256)
objPart, uerr := c.uploadPart(ctx, bucketName, objectName, uploadID, rd, partNumber, md5Base64, sha256Hex, int64(length), opts.ServerSideEncryption, !opts.DisableContentSha256, customHeader)
if uerr != nil {
return UploadInfo{}, uerr
}
@ -171,15 +189,25 @@ func (c *Client) putObjectMultipartNoStream(ctx context.Context, bucketName, obj
return UploadInfo{}, errInvalidArgument(fmt.Sprintf("Missing part number %d", i))
}
complMultipartUpload.Parts = append(complMultipartUpload.Parts, CompletePart{
ETag: part.ETag,
PartNumber: part.PartNumber,
ETag: part.ETag,
PartNumber: part.PartNumber,
ChecksumCRC32: part.ChecksumCRC32,
ChecksumCRC32C: part.ChecksumCRC32C,
ChecksumSHA1: part.ChecksumSHA1,
ChecksumSHA256: part.ChecksumSHA256,
})
}
// Sort all completed parts.
sort.Sort(completedParts(complMultipartUpload.Parts))
uploadInfo, err := c.completeMultipartUpload(ctx, bucketName, objectName, uploadID, complMultipartUpload, PutObjectOptions{})
opts = PutObjectOptions{}
if len(crcBytes) > 0 {
// Add hash of hashes.
crc.Reset()
crc.Write(crcBytes)
opts.UserMetadata = map[string]string{"X-Amz-Checksum-Crc32c": base64.StdEncoding.EncodeToString(crc.Sum(nil))}
}
uploadInfo, err := c.completeMultipartUpload(ctx, bucketName, objectName, uploadID, complMultipartUpload, opts)
if err != nil {
return UploadInfo{}, err
}
@ -242,9 +270,7 @@ func (c *Client) initiateMultipartUpload(ctx context.Context, bucketName, object
}
// uploadPart - Uploads a part in a multipart upload.
func (c *Client) uploadPart(ctx context.Context, bucketName, objectName, uploadID string, reader io.Reader,
partNumber int, md5Base64, sha256Hex string, size int64, sse encrypt.ServerSide, streamSha256 bool,
) (ObjectPart, error) {
func (c *Client) uploadPart(ctx context.Context, bucketName string, objectName string, uploadID string, reader io.Reader, partNumber int, md5Base64 string, sha256Hex string, size int64, sse encrypt.ServerSide, streamSha256 bool, customHeader http.Header) (ObjectPart, error) {
// Input validation.
if err := s3utils.CheckValidBucketName(bucketName); err != nil {
return ObjectPart{}, err
@ -273,7 +299,9 @@ func (c *Client) uploadPart(ctx context.Context, bucketName, objectName, uploadI
urlValues.Set("uploadId", uploadID)
// Set encryption headers, if any.
customHeader := make(http.Header)
if customHeader == nil {
customHeader = make(http.Header)
}
// https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
// Server-side encryption is supported by the S3 Multipart Upload actions.
// Unless you are using a customer-provided encryption key, you don't need
@ -306,11 +334,17 @@ func (c *Client) uploadPart(ctx context.Context, bucketName, objectName, uploadI
}
}
// Once successfully uploaded, return completed part.
objPart := ObjectPart{}
h := resp.Header
objPart := ObjectPart{
ChecksumCRC32: h.Get("x-amz-checksum-crc32"),
ChecksumCRC32C: h.Get("x-amz-checksum-crc32c"),
ChecksumSHA1: h.Get("x-amz-checksum-sha1"),
ChecksumSHA256: h.Get("x-amz-checksum-sha256"),
}
objPart.Size = size
objPart.PartNumber = partNumber
// Trim off the odd double quotes from ETag in the beginning and end.
objPart.ETag = trimEtag(resp.Header.Get("ETag"))
objPart.ETag = trimEtag(h.Get("ETag"))
return objPart, nil
}

View File

@ -22,6 +22,7 @@ import (
"context"
"encoding/base64"
"fmt"
"hash/crc32"
"io"
"net/http"
"net/url"
@ -38,9 +39,8 @@ import (
//
// Following code handles these types of readers.
//
// - *minio.Object
// - Any reader which has a method 'ReadAt()'
//
// - *minio.Object
// - Any reader which has a method 'ReadAt()'
func (c *Client) putObjectMultipartStream(ctx context.Context, bucketName, objectName string,
reader io.Reader, size int64, opts PutObjectOptions,
) (info UploadInfo, err error) {
@ -184,12 +184,7 @@ func (c *Client) putObjectMultipartStreamFromReadAt(ctx context.Context, bucketN
sectionReader := newHook(io.NewSectionReader(reader, readOffset, partSize), opts.Progress)
// Proceed to upload the part.
objPart, err := c.uploadPart(ctx, bucketName, objectName,
uploadID, sectionReader, uploadReq.PartNum,
"", "", partSize,
opts.ServerSideEncryption,
!opts.DisableContentSha256,
)
objPart, err := c.uploadPart(ctx, bucketName, objectName, uploadID, sectionReader, uploadReq.PartNum, "", "", partSize, opts.ServerSideEncryption, !opts.DisableContentSha256, nil)
if err != nil {
uploadedPartsCh <- uploadedPartRes{
Error: err,
@ -260,6 +255,13 @@ func (c *Client) putObjectMultipartStreamOptionalChecksum(ctx context.Context, b
return UploadInfo{}, err
}
if !opts.SendContentMd5 {
if opts.UserMetadata == nil {
opts.UserMetadata = make(map[string]string, 1)
}
opts.UserMetadata["X-Amz-Checksum-Algorithm"] = "CRC32C"
}
// Calculate the optimal parts info for a given size.
totalPartsCount, partSize, lastPartSize, err := OptimalPartInfo(size, opts.PartSize)
if err != nil {
@ -270,6 +272,7 @@ func (c *Client) putObjectMultipartStreamOptionalChecksum(ctx context.Context, b
if err != nil {
return UploadInfo{}, err
}
delete(opts.UserMetadata, "X-Amz-Checksum-Algorithm")
// Aborts the multipart upload if the function returns
// any error, since we do not resume we should purge
@ -281,6 +284,14 @@ func (c *Client) putObjectMultipartStreamOptionalChecksum(ctx context.Context, b
}
}()
// Create checksums
// CRC32C is ~50% faster on AMD64 @ 30GB/s
var crcBytes []byte
customHeader := make(http.Header)
crc := crc32.New(crc32.MakeTable(crc32.Castagnoli))
md5Hash := c.md5Hasher()
defer md5Hash.Close()
// Total data read and written to server. should be equal to 'size' at the end of the call.
var totalUploadedSize int64
@ -292,7 +303,6 @@ func (c *Client) putObjectMultipartStreamOptionalChecksum(ctx context.Context, b
// Avoid declaring variables in the for loop
var md5Base64 string
var hookReader io.Reader
// Part number always starts with '1'.
var partNumber int
@ -303,37 +313,34 @@ func (c *Client) putObjectMultipartStreamOptionalChecksum(ctx context.Context, b
partSize = lastPartSize
}
if opts.SendContentMd5 {
length, rerr := readFull(reader, buf)
if rerr == io.EOF && partNumber > 1 {
break
}
if rerr != nil && rerr != io.ErrUnexpectedEOF && err != io.EOF {
return UploadInfo{}, rerr
}
// Calculate md5sum.
hash := c.md5Hasher()
hash.Write(buf[:length])
md5Base64 = base64.StdEncoding.EncodeToString(hash.Sum(nil))
hash.Close()
// Update progress reader appropriately to the latest offset
// as we read from the source.
hookReader = newHook(bytes.NewReader(buf[:length]), opts.Progress)
} else {
// Update progress reader appropriately to the latest offset
// as we read from the source.
hookReader = newHook(reader, opts.Progress)
length, rerr := readFull(reader, buf)
if rerr == io.EOF && partNumber > 1 {
break
}
objPart, uerr := c.uploadPart(ctx, bucketName, objectName, uploadID,
io.LimitReader(hookReader, partSize),
partNumber, md5Base64, "", partSize,
opts.ServerSideEncryption,
!opts.DisableContentSha256,
)
if rerr != nil && rerr != io.ErrUnexpectedEOF && err != io.EOF {
return UploadInfo{}, rerr
}
// Calculate md5sum.
if opts.SendContentMd5 {
md5Hash.Reset()
md5Hash.Write(buf[:length])
md5Base64 = base64.StdEncoding.EncodeToString(md5Hash.Sum(nil))
} else {
// Add CRC32C instead.
crc.Reset()
crc.Write(buf[:length])
cSum := crc.Sum(nil)
customHeader.Set("x-amz-checksum-crc32c", base64.StdEncoding.EncodeToString(cSum))
crcBytes = append(crcBytes, cSum...)
}
// Update progress reader appropriately to the latest offset
// as we read from the source.
hooked := newHook(bytes.NewReader(buf[:length]), opts.Progress)
objPart, uerr := c.uploadPart(ctx, bucketName, objectName, uploadID, hooked, partNumber, md5Base64, "", partSize, opts.ServerSideEncryption, !opts.DisableContentSha256, customHeader)
if uerr != nil {
return UploadInfo{}, uerr
}
@ -363,15 +370,26 @@ func (c *Client) putObjectMultipartStreamOptionalChecksum(ctx context.Context, b
return UploadInfo{}, errInvalidArgument(fmt.Sprintf("Missing part number %d", i))
}
complMultipartUpload.Parts = append(complMultipartUpload.Parts, CompletePart{
ETag: part.ETag,
PartNumber: part.PartNumber,
ETag: part.ETag,
PartNumber: part.PartNumber,
ChecksumCRC32: part.ChecksumCRC32,
ChecksumCRC32C: part.ChecksumCRC32C,
ChecksumSHA1: part.ChecksumSHA1,
ChecksumSHA256: part.ChecksumSHA256,
})
}
// Sort all completed parts.
sort.Sort(completedParts(complMultipartUpload.Parts))
uploadInfo, err := c.completeMultipartUpload(ctx, bucketName, objectName, uploadID, complMultipartUpload, PutObjectOptions{})
opts = PutObjectOptions{}
if len(crcBytes) > 0 {
// Add hash of hashes.
crc.Reset()
crc.Write(crcBytes)
opts.UserMetadata = map[string]string{"X-Amz-Checksum-Crc32c": base64.StdEncoding.EncodeToString(crc.Sum(nil))}
}
uploadInfo, err := c.completeMultipartUpload(ctx, bucketName, objectName, uploadID, complMultipartUpload, opts)
if err != nil {
return UploadInfo{}, err
}
@ -490,14 +508,20 @@ func (c *Client) putObjectDo(ctx context.Context, bucketName, objectName string,
// extract lifecycle expiry date and rule ID
expTime, ruleID := amzExpirationToExpiryDateRuleID(resp.Header.Get(amzExpiration))
h := resp.Header
return UploadInfo{
Bucket: bucketName,
Key: objectName,
ETag: trimEtag(resp.Header.Get("ETag")),
VersionID: resp.Header.Get(amzVersionID),
ETag: trimEtag(h.Get("ETag")),
VersionID: h.Get(amzVersionID),
Size: size,
Expiration: expTime,
ExpirationRuleID: ruleID,
// Checksum values
ChecksumCRC32: h.Get("x-amz-checksum-crc32"),
ChecksumCRC32C: h.Get("x-amz-checksum-crc32c"),
ChecksumSHA1: h.Get("x-amz-checksum-sha1"),
ChecksumSHA256: h.Get("x-amz-checksum-sha256"),
}, nil
}

View File

@ -23,6 +23,7 @@ import (
"encoding/base64"
"errors"
"fmt"
"hash/crc32"
"io"
"net/http"
"sort"
@ -215,18 +216,18 @@ func (a completedParts) Less(i, j int) bool { return a[i].PartNumber < a[j].Part
//
// You must have WRITE permissions on a bucket to create an object.
//
// - For size smaller than 16MiB PutObject automatically does a
// single atomic PUT operation.
// - For size smaller than 16MiB PutObject automatically does a
// single atomic PUT operation.
//
// - For size larger than 16MiB PutObject automatically does a
// multipart upload operation.
// - For size larger than 16MiB PutObject automatically does a
// multipart upload operation.
//
// - For size input as -1 PutObject does a multipart Put operation
// until input stream reaches EOF. Maximum object size that can
// be uploaded through this operation will be 5TiB.
// - For size input as -1 PutObject does a multipart Put operation
// until input stream reaches EOF. Maximum object size that can
// be uploaded through this operation will be 5TiB.
//
// WARNING: Passing down '-1' will use memory and these cannot
// be reused for best outcomes for PutObject(), pass the size always.
// WARNING: Passing down '-1' will use memory and these cannot
// be reused for best outcomes for PutObject(), pass the size always.
//
// NOTE: Upon errors during upload multipart operation is entirely aborted.
func (c *Client) PutObject(ctx context.Context, bucketName, objectName string, reader io.Reader, objectSize int64,
@ -299,11 +300,20 @@ func (c *Client) putObjectMultipartStreamNoLength(ctx context.Context, bucketNam
if err != nil {
return UploadInfo{}, err
}
if !opts.SendContentMd5 {
if opts.UserMetadata == nil {
opts.UserMetadata = make(map[string]string, 1)
}
opts.UserMetadata["X-Amz-Checksum-Algorithm"] = "CRC32C"
}
// Initiate a new multipart upload.
uploadID, err := c.newUploadID(ctx, bucketName, objectName, opts)
if err != nil {
return UploadInfo{}, err
}
delete(opts.UserMetadata, "X-Amz-Checksum-Algorithm")
defer func() {
if err != nil {
@ -320,6 +330,12 @@ func (c *Client) putObjectMultipartStreamNoLength(ctx context.Context, bucketNam
// Create a buffer.
buf := make([]byte, partSize)
// Create checksums
// CRC32C is ~50% faster on AMD64 @ 30GB/s
var crcBytes []byte
customHeader := make(http.Header)
crc := crc32.New(crc32.MakeTable(crc32.Castagnoli))
for partNumber <= totalPartsCount {
length, rerr := readFull(reader, buf)
if rerr == io.EOF && partNumber > 1 {
@ -337,6 +353,12 @@ func (c *Client) putObjectMultipartStreamNoLength(ctx context.Context, bucketNam
hash.Write(buf[:length])
md5Base64 = base64.StdEncoding.EncodeToString(hash.Sum(nil))
hash.Close()
} else {
crc.Reset()
crc.Write(buf[:length])
cSum := crc.Sum(nil)
customHeader.Set("x-amz-checksum-crc32c", base64.StdEncoding.EncodeToString(cSum))
crcBytes = append(crcBytes, cSum...)
}
// Update progress reader appropriately to the latest offset
@ -344,11 +366,7 @@ func (c *Client) putObjectMultipartStreamNoLength(ctx context.Context, bucketNam
rd := newHook(bytes.NewReader(buf[:length]), opts.Progress)
// Proceed to upload the part.
objPart, uerr := c.uploadPart(ctx, bucketName, objectName, uploadID, rd, partNumber,
md5Base64, "", int64(length),
opts.ServerSideEncryption,
!opts.DisableContentSha256,
)
objPart, uerr := c.uploadPart(ctx, bucketName, objectName, uploadID, rd, partNumber, md5Base64, "", int64(length), opts.ServerSideEncryption, !opts.DisableContentSha256, customHeader)
if uerr != nil {
return UploadInfo{}, uerr
}
@ -377,15 +395,26 @@ func (c *Client) putObjectMultipartStreamNoLength(ctx context.Context, bucketNam
return UploadInfo{}, errInvalidArgument(fmt.Sprintf("Missing part number %d", i))
}
complMultipartUpload.Parts = append(complMultipartUpload.Parts, CompletePart{
ETag: part.ETag,
PartNumber: part.PartNumber,
ETag: part.ETag,
PartNumber: part.PartNumber,
ChecksumCRC32: part.ChecksumCRC32,
ChecksumCRC32C: part.ChecksumCRC32C,
ChecksumSHA1: part.ChecksumSHA1,
ChecksumSHA256: part.ChecksumSHA256,
})
}
// Sort all completed parts.
sort.Sort(completedParts(complMultipartUpload.Parts))
uploadInfo, err := c.completeMultipartUpload(ctx, bucketName, objectName, uploadID, complMultipartUpload, PutObjectOptions{})
opts = PutObjectOptions{}
if len(crcBytes) > 0 {
// Add hash of hashes.
crc.Reset()
crc.Write(crcBytes)
opts.UserMetadata = map[string]string{"X-Amz-Checksum-Crc32c": base64.StdEncoding.EncodeToString(crc.Sum(nil))}
}
uploadInfo, err := c.completeMultipartUpload(ctx, bucketName, objectName, uploadID, complMultipartUpload, opts)
if err != nil {
return UploadInfo{}, err
}

View File

@ -261,6 +261,12 @@ type ObjectPart struct {
// Size of the uploaded part data.
Size int64
// Checksum values of each part.
ChecksumCRC32 string
ChecksumCRC32C string
ChecksumSHA1 string
ChecksumSHA256 string
}
// ListObjectPartsResult container for ListObjectParts response.
@ -299,6 +305,12 @@ type completeMultipartUploadResult struct {
Bucket string
Key string
ETag string
// Checksum values, hash of hashes of parts.
ChecksumCRC32 string
ChecksumCRC32C string
ChecksumSHA1 string
ChecksumSHA256 string
}
// CompletePart sub container lists individual part numbers and their
@ -309,6 +321,12 @@ type CompletePart struct {
// Part number identifies the part.
PartNumber int
ETag string
// Checksum values
ChecksumCRC32 string
ChecksumCRC32C string
ChecksumSHA1 string
ChecksumSHA256 string
}
// completeMultipartUpload container for completing multipart upload.

Some files were not shown because too many files have changed in this diff Show More