// GoToSocial // Copyright (C) GoToSocial Authors admin@gotosocial.org // SPDX-License-Identifier: AGPL-3.0-or-later // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. package xslices import ( "slices" ) // GrowJust increases slice capacity to guarantee // extra room 'size', where in the case that it does // need to allocate more it ONLY allocates 'size' extra. // This is different to typical slices.Grow behaviour, // which simply guarantees extra through append() which // may allocate more than necessary extra size. func GrowJust[T any](in []T, size int) []T { if cap(in)-len(in) < size { // Reallocate enough for in + size. in2 := make([]T, len(in), len(in)+size) _ = copy(in2, in) in = in2 } return in } // AppendJust appends extra elements to slice, // ONLY allocating at most len(extra) elements. This // is different to the typical append behaviour which // will append extra, in a manner to reduce the need // for new allocations on every call to append. func AppendJust[T any](in []T, extra ...T) []T { l := len(in) if cap(in)-l < len(extra) { // Reallocate enough for + extra. in2 := make([]T, l+len(extra)) _ = copy(in2, in) in = in2 } else { // Reslice for + extra. in = in[:l+len(extra)] } // Copy extra into slice. _ = copy(in[l:], extra) return in } // Deduplicate deduplicates entries in the given slice. func Deduplicate[T comparable](in []T) []T { var ( inL = len(in) unique = make(map[T]struct{}, inL) deduped = make([]T, 0, inL) ) for _, v := range in { if _, ok := unique[v]; ok { // Already have this. continue } unique[v] = struct{}{} deduped = append(deduped, v) } return deduped } // DeduplicateFunc deduplicates entries in the given // slice, using the result of key() to gauge uniqueness. func DeduplicateFunc[T any, C comparable](in []T, key func(v T) C) []T { var ( inL = len(in) unique = make(map[C]struct{}, inL) deduped = make([]T, 0, inL) ) if key == nil { panic("nil func") } for _, v := range in { k := key(v) if _, ok := unique[k]; ok { // Already have this. continue } unique[k] = struct{}{} deduped = append(deduped, v) } return deduped } // Gather will collect the values of type V from input type []T, // passing each item to 'get' and appending V to the return slice. func Gather[T, V any](out []V, in []T, get func(T) V) []V { if get == nil { panic("nil func") } // Starting write index // in the resliced / re // alloc'd output slice. start := len(out) // Total required slice len. total := start + len(in) if total > cap(out) { // Reallocate output with // capacity for total len. out2 := make([]V, len(out), total) copy(out2, out) out = out2 } // Reslice with capacity // up to total required. out = out[:total] // Gather vs from 'in'. for i, v := range in { j := start + i out[j] = get(v) } return out } // GatherIf is functionally similar to Gather(), but only when return bool is true. // If you don't need to check the boolean, Gather() will be very slightly faster. func GatherIf[T, V any](out []V, in []T, get func(T) (V, bool)) []V { if get == nil { panic("nil func") } if cap(out)-len(out) < len(in) { // Reallocate output with capacity for 'in'. out2 := make([]V, len(out), cap(out)+len(in)) copy(out2, out) out = out2 } // Gather vs from 'in'. for _, v := range in { if v, ok := get(v); ok { out = append(out, v) } } return out } // Collate will collect the values of type K from input type []T, // passing each item to 'get' and deduplicating the end result. // This is equivalent to calling Gather() followed by Deduplicate(). func Collate[T any, K comparable](in []T, get func(T) K) []K { if get == nil { panic("nil func") } ks := make([]K, 0, len(in)) km := make(map[K]struct{}, len(in)) for i := 0; i < len(in); i++ { // Get next k. k := get(in[i]) if _, ok := km[k]; !ok { // New value, add // to map + slice. ks = append(ks, k) km[k] = struct{}{} } } return ks } // OrderBy orders a slice of given type by the provided alternative slice of comparable type. func OrderBy[T any, K comparable](in []T, keys []K, key func(T) K) { if key == nil { panic("nil func") } // Create lookup of keys->idx. m := make(map[K]int, len(in)) for i, k := range keys { m[k] = i } // Sort according to the reverse lookup. slices.SortFunc(in, func(a, b T) int { ai := m[key(a)] bi := m[key(b)] if ai < bi { return -1 } else if bi < ai { return +1 } return 0 }) }