mirror of
1
Fork 0
gotosocial/vendor/github.com/cilium/ebpf/map.go

1425 lines
37 KiB
Go

package ebpf
import (
"bytes"
"errors"
"fmt"
"io"
"math/rand"
"path/filepath"
"reflect"
"time"
"unsafe"
"github.com/cilium/ebpf/btf"
"github.com/cilium/ebpf/internal"
"github.com/cilium/ebpf/internal/sys"
"github.com/cilium/ebpf/internal/unix"
)
// Errors returned by Map and MapIterator methods.
var (
ErrKeyNotExist = errors.New("key does not exist")
ErrKeyExist = errors.New("key already exists")
ErrIterationAborted = errors.New("iteration aborted")
ErrMapIncompatible = errors.New("map spec is incompatible with existing map")
errMapNoBTFValue = errors.New("map spec does not contain a BTF Value")
)
// MapOptions control loading a map into the kernel.
type MapOptions struct {
// The base path to pin maps in if requested via PinByName.
// Existing maps will be re-used if they are compatible, otherwise an
// error is returned.
PinPath string
LoadPinOptions LoadPinOptions
}
// MapID represents the unique ID of an eBPF map
type MapID uint32
// MapSpec defines a Map.
type MapSpec struct {
// Name is passed to the kernel as a debug aid. Must only contain
// alpha numeric and '_' characters.
Name string
Type MapType
KeySize uint32
ValueSize uint32
MaxEntries uint32
// Flags is passed to the kernel and specifies additional map
// creation attributes.
Flags uint32
// Automatically pin and load a map from MapOptions.PinPath.
// Generates an error if an existing pinned map is incompatible with the MapSpec.
Pinning PinType
// Specify numa node during map creation
// (effective only if unix.BPF_F_NUMA_NODE flag is set,
// which can be imported from golang.org/x/sys/unix)
NumaNode uint32
// The initial contents of the map. May be nil.
Contents []MapKV
// Whether to freeze a map after setting its initial contents.
Freeze bool
// InnerMap is used as a template for ArrayOfMaps and HashOfMaps
InnerMap *MapSpec
// Extra trailing bytes found in the ELF map definition when using structs
// larger than libbpf's bpf_map_def. nil if no trailing bytes were present.
// Must be nil or empty before instantiating the MapSpec into a Map.
Extra *bytes.Reader
// The key and value type of this map. May be nil.
Key, Value btf.Type
// The BTF associated with this map.
BTF *btf.Spec
}
func (ms *MapSpec) String() string {
return fmt.Sprintf("%s(keySize=%d, valueSize=%d, maxEntries=%d, flags=%d)", ms.Type, ms.KeySize, ms.ValueSize, ms.MaxEntries, ms.Flags)
}
// Copy returns a copy of the spec.
//
// MapSpec.Contents is a shallow copy.
func (ms *MapSpec) Copy() *MapSpec {
if ms == nil {
return nil
}
cpy := *ms
cpy.Contents = make([]MapKV, len(ms.Contents))
copy(cpy.Contents, ms.Contents)
cpy.InnerMap = ms.InnerMap.Copy()
return &cpy
}
// hasBTF returns true if the MapSpec has a valid BTF spec and if its
// map type supports associated BTF metadata in the kernel.
func (ms *MapSpec) hasBTF() bool {
return ms.BTF != nil && ms.Type.hasBTF()
}
func (ms *MapSpec) clampPerfEventArraySize() error {
if ms.Type != PerfEventArray {
return nil
}
n, err := internal.PossibleCPUs()
if err != nil {
return fmt.Errorf("perf event array: %w", err)
}
if n := uint32(n); ms.MaxEntries > n {
ms.MaxEntries = n
}
return nil
}
// dataSection returns the contents and BTF Datasec descriptor of the spec.
func (ms *MapSpec) dataSection() ([]byte, *btf.Datasec, error) {
if ms.Value == nil {
return nil, nil, errMapNoBTFValue
}
ds, ok := ms.Value.(*btf.Datasec)
if !ok {
return nil, nil, fmt.Errorf("map value BTF is a %T, not a *btf.Datasec", ms.Value)
}
if n := len(ms.Contents); n != 1 {
return nil, nil, fmt.Errorf("expected one key, found %d", n)
}
kv := ms.Contents[0]
value, ok := kv.Value.([]byte)
if !ok {
return nil, nil, fmt.Errorf("value at first map key is %T, not []byte", kv.Value)
}
return value, ds, nil
}
// MapKV is used to initialize the contents of a Map.
type MapKV struct {
Key interface{}
Value interface{}
}
func (ms *MapSpec) checkCompatibility(m *Map) error {
switch {
case m.typ != ms.Type:
return fmt.Errorf("expected type %v, got %v: %w", ms.Type, m.typ, ErrMapIncompatible)
case m.keySize != ms.KeySize:
return fmt.Errorf("expected key size %v, got %v: %w", ms.KeySize, m.keySize, ErrMapIncompatible)
case m.valueSize != ms.ValueSize:
return fmt.Errorf("expected value size %v, got %v: %w", ms.ValueSize, m.valueSize, ErrMapIncompatible)
case !(ms.Type == PerfEventArray && ms.MaxEntries == 0) &&
m.maxEntries != ms.MaxEntries:
return fmt.Errorf("expected max entries %v, got %v: %w", ms.MaxEntries, m.maxEntries, ErrMapIncompatible)
case m.flags != ms.Flags:
return fmt.Errorf("expected flags %v, got %v: %w", ms.Flags, m.flags, ErrMapIncompatible)
}
return nil
}
// Map represents a Map file descriptor.
//
// It is not safe to close a map which is used by other goroutines.
//
// Methods which take interface{} arguments by default encode
// them using binary.Read/Write in the machine's native endianness.
//
// Implement encoding.BinaryMarshaler or encoding.BinaryUnmarshaler
// if you require custom encoding.
type Map struct {
name string
fd *sys.FD
typ MapType
keySize uint32
valueSize uint32
maxEntries uint32
flags uint32
pinnedPath string
// Per CPU maps return values larger than the size in the spec
fullValueSize int
}
// NewMapFromFD creates a map from a raw fd.
//
// You should not use fd after calling this function.
func NewMapFromFD(fd int) (*Map, error) {
f, err := sys.NewFD(fd)
if err != nil {
return nil, err
}
return newMapFromFD(f)
}
func newMapFromFD(fd *sys.FD) (*Map, error) {
info, err := newMapInfoFromFd(fd)
if err != nil {
fd.Close()
return nil, fmt.Errorf("get map info: %w", err)
}
return newMap(fd, info.Name, info.Type, info.KeySize, info.ValueSize, info.MaxEntries, info.Flags)
}
// NewMap creates a new Map.
//
// It's equivalent to calling NewMapWithOptions with default options.
func NewMap(spec *MapSpec) (*Map, error) {
return NewMapWithOptions(spec, MapOptions{})
}
// NewMapWithOptions creates a new Map.
//
// Creating a map for the first time will perform feature detection
// by creating small, temporary maps.
//
// The caller is responsible for ensuring the process' rlimit is set
// sufficiently high for locking memory during map creation. This can be done
// by calling rlimit.RemoveMemlock() prior to calling NewMapWithOptions.
//
// May return an error wrapping ErrMapIncompatible.
func NewMapWithOptions(spec *MapSpec, opts MapOptions) (*Map, error) {
handles := newHandleCache()
defer handles.close()
m, err := newMapWithOptions(spec, opts, handles)
if err != nil {
return nil, fmt.Errorf("creating map: %w", err)
}
if err := m.finalize(spec); err != nil {
m.Close()
return nil, fmt.Errorf("populating map: %w", err)
}
return m, nil
}
func newMapWithOptions(spec *MapSpec, opts MapOptions, handles *handleCache) (_ *Map, err error) {
closeOnError := func(c io.Closer) {
if err != nil {
c.Close()
}
}
switch spec.Pinning {
case PinByName:
if spec.Name == "" {
return nil, fmt.Errorf("pin by name: missing Name")
}
if opts.PinPath == "" {
return nil, fmt.Errorf("pin by name: missing MapOptions.PinPath")
}
path := filepath.Join(opts.PinPath, spec.Name)
m, err := LoadPinnedMap(path, &opts.LoadPinOptions)
if errors.Is(err, unix.ENOENT) {
break
}
if err != nil {
return nil, fmt.Errorf("load pinned map: %w", err)
}
defer closeOnError(m)
if err := spec.checkCompatibility(m); err != nil {
return nil, fmt.Errorf("use pinned map %s: %w", spec.Name, err)
}
return m, nil
case PinNone:
// Nothing to do here
default:
return nil, fmt.Errorf("pin type %d: %w", int(spec.Pinning), ErrNotSupported)
}
var innerFd *sys.FD
if spec.Type == ArrayOfMaps || spec.Type == HashOfMaps {
if spec.InnerMap == nil {
return nil, fmt.Errorf("%s requires InnerMap", spec.Type)
}
if spec.InnerMap.Pinning != PinNone {
return nil, errors.New("inner maps cannot be pinned")
}
template, err := spec.InnerMap.createMap(nil, opts, handles)
if err != nil {
return nil, fmt.Errorf("inner map: %w", err)
}
defer template.Close()
// Intentionally skip populating and freezing (finalizing)
// the inner map template since it will be removed shortly.
innerFd = template.fd
}
m, err := spec.createMap(innerFd, opts, handles)
if err != nil {
return nil, err
}
defer closeOnError(m)
if spec.Pinning == PinByName {
path := filepath.Join(opts.PinPath, spec.Name)
if err := m.Pin(path); err != nil {
return nil, fmt.Errorf("pin map: %w", err)
}
}
return m, nil
}
// createMap validates the spec's properties and creates the map in the kernel
// using the given opts. It does not populate or freeze the map.
func (spec *MapSpec) createMap(inner *sys.FD, opts MapOptions, handles *handleCache) (_ *Map, err error) {
closeOnError := func(closer io.Closer) {
if err != nil {
closer.Close()
}
}
spec = spec.Copy()
// Kernels 4.13 through 5.4 used a struct bpf_map_def that contained
// additional 'inner_map_idx' and later 'numa_node' fields.
// In order to support loading these definitions, tolerate the presence of
// extra bytes, but require them to be zeroes.
if spec.Extra != nil {
if _, err := io.Copy(internal.DiscardZeroes{}, spec.Extra); err != nil {
return nil, errors.New("extra contains unhandled non-zero bytes, drain before creating map")
}
}
switch spec.Type {
case ArrayOfMaps, HashOfMaps:
if err := haveNestedMaps(); err != nil {
return nil, err
}
if spec.ValueSize != 0 && spec.ValueSize != 4 {
return nil, errors.New("ValueSize must be zero or four for map of map")
}
spec.ValueSize = 4
case PerfEventArray:
if spec.KeySize != 0 && spec.KeySize != 4 {
return nil, errors.New("KeySize must be zero or four for perf event array")
}
spec.KeySize = 4
if spec.ValueSize != 0 && spec.ValueSize != 4 {
return nil, errors.New("ValueSize must be zero or four for perf event array")
}
spec.ValueSize = 4
if spec.MaxEntries == 0 {
n, err := internal.PossibleCPUs()
if err != nil {
return nil, fmt.Errorf("perf event array: %w", err)
}
spec.MaxEntries = uint32(n)
}
}
if spec.Flags&(unix.BPF_F_RDONLY_PROG|unix.BPF_F_WRONLY_PROG) > 0 || spec.Freeze {
if err := haveMapMutabilityModifiers(); err != nil {
return nil, fmt.Errorf("map create: %w", err)
}
}
if spec.Flags&unix.BPF_F_MMAPABLE > 0 {
if err := haveMmapableMaps(); err != nil {
return nil, fmt.Errorf("map create: %w", err)
}
}
if spec.Flags&unix.BPF_F_INNER_MAP > 0 {
if err := haveInnerMaps(); err != nil {
return nil, fmt.Errorf("map create: %w", err)
}
}
if spec.Flags&unix.BPF_F_NO_PREALLOC > 0 {
if err := haveNoPreallocMaps(); err != nil {
return nil, fmt.Errorf("map create: %w", err)
}
}
attr := sys.MapCreateAttr{
MapType: sys.MapType(spec.Type),
KeySize: spec.KeySize,
ValueSize: spec.ValueSize,
MaxEntries: spec.MaxEntries,
MapFlags: spec.Flags,
NumaNode: spec.NumaNode,
}
if inner != nil {
attr.InnerMapFd = inner.Uint()
}
if haveObjName() == nil {
attr.MapName = sys.NewObjName(spec.Name)
}
if spec.hasBTF() {
handle, err := handles.btfHandle(spec.BTF)
if err != nil && !errors.Is(err, btf.ErrNotSupported) {
return nil, fmt.Errorf("load BTF: %w", err)
}
if handle != nil {
keyTypeID, err := spec.BTF.TypeID(spec.Key)
if err != nil {
return nil, err
}
valueTypeID, err := spec.BTF.TypeID(spec.Value)
if err != nil {
return nil, err
}
attr.BtfFd = uint32(handle.FD())
attr.BtfKeyTypeId = uint32(keyTypeID)
attr.BtfValueTypeId = uint32(valueTypeID)
}
}
fd, err := sys.MapCreate(&attr)
if err != nil {
if errors.Is(err, unix.EPERM) {
return nil, fmt.Errorf("map create: %w (MEMLOCK may be too low, consider rlimit.RemoveMemlock)", err)
}
if !spec.hasBTF() {
return nil, fmt.Errorf("map create without BTF: %w", err)
}
if errors.Is(err, unix.EINVAL) && attr.MaxEntries == 0 {
return nil, fmt.Errorf("map create: %w (MaxEntries may be incorrectly set to zero)", err)
}
return nil, fmt.Errorf("map create: %w", err)
}
defer closeOnError(fd)
m, err := newMap(fd, spec.Name, spec.Type, spec.KeySize, spec.ValueSize, spec.MaxEntries, spec.Flags)
if err != nil {
return nil, fmt.Errorf("map create: %w", err)
}
return m, nil
}
// newMap allocates and returns a new Map structure.
// Sets the fullValueSize on per-CPU maps.
func newMap(fd *sys.FD, name string, typ MapType, keySize, valueSize, maxEntries, flags uint32) (*Map, error) {
m := &Map{
name,
fd,
typ,
keySize,
valueSize,
maxEntries,
flags,
"",
int(valueSize),
}
if !typ.hasPerCPUValue() {
return m, nil
}
possibleCPUs, err := internal.PossibleCPUs()
if err != nil {
return nil, err
}
m.fullValueSize = internal.Align(int(valueSize), 8) * possibleCPUs
return m, nil
}
func (m *Map) String() string {
if m.name != "" {
return fmt.Sprintf("%s(%s)#%v", m.typ, m.name, m.fd)
}
return fmt.Sprintf("%s#%v", m.typ, m.fd)
}
// Type returns the underlying type of the map.
func (m *Map) Type() MapType {
return m.typ
}
// KeySize returns the size of the map key in bytes.
func (m *Map) KeySize() uint32 {
return m.keySize
}
// ValueSize returns the size of the map value in bytes.
func (m *Map) ValueSize() uint32 {
return m.valueSize
}
// MaxEntries returns the maximum number of elements the map can hold.
func (m *Map) MaxEntries() uint32 {
return m.maxEntries
}
// Flags returns the flags of the map.
func (m *Map) Flags() uint32 {
return m.flags
}
// Info returns metadata about the map.
func (m *Map) Info() (*MapInfo, error) {
return newMapInfoFromFd(m.fd)
}
// MapLookupFlags controls the behaviour of the map lookup calls.
type MapLookupFlags uint64
// LookupLock look up the value of a spin-locked map.
const LookupLock MapLookupFlags = 4
// Lookup retrieves a value from a Map.
//
// Calls Close() on valueOut if it is of type **Map or **Program,
// and *valueOut is not nil.
//
// Returns an error if the key doesn't exist, see ErrKeyNotExist.
func (m *Map) Lookup(key, valueOut interface{}) error {
valuePtr, valueBytes := makeBuffer(valueOut, m.fullValueSize)
if err := m.lookup(key, valuePtr, 0); err != nil {
return err
}
return m.unmarshalValue(valueOut, valueBytes)
}
// LookupWithFlags retrieves a value from a Map with flags.
//
// Passing LookupLock flag will look up the value of a spin-locked
// map without returning the lock. This must be specified if the
// elements contain a spinlock.
//
// Calls Close() on valueOut if it is of type **Map or **Program,
// and *valueOut is not nil.
//
// Returns an error if the key doesn't exist, see ErrKeyNotExist.
func (m *Map) LookupWithFlags(key, valueOut interface{}, flags MapLookupFlags) error {
valuePtr, valueBytes := makeBuffer(valueOut, m.fullValueSize)
if err := m.lookup(key, valuePtr, flags); err != nil {
return err
}
return m.unmarshalValue(valueOut, valueBytes)
}
// LookupAndDelete retrieves and deletes a value from a Map.
//
// Returns ErrKeyNotExist if the key doesn't exist.
func (m *Map) LookupAndDelete(key, valueOut interface{}) error {
return m.lookupAndDelete(key, valueOut, 0)
}
// LookupAndDeleteWithFlags retrieves and deletes a value from a Map.
//
// Passing LookupLock flag will look up and delete the value of a spin-locked
// map without returning the lock. This must be specified if the elements
// contain a spinlock.
//
// Returns ErrKeyNotExist if the key doesn't exist.
func (m *Map) LookupAndDeleteWithFlags(key, valueOut interface{}, flags MapLookupFlags) error {
return m.lookupAndDelete(key, valueOut, flags)
}
// LookupBytes gets a value from Map.
//
// Returns a nil value if a key doesn't exist.
func (m *Map) LookupBytes(key interface{}) ([]byte, error) {
valueBytes := make([]byte, m.fullValueSize)
valuePtr := sys.NewSlicePointer(valueBytes)
err := m.lookup(key, valuePtr, 0)
if errors.Is(err, ErrKeyNotExist) {
return nil, nil
}
return valueBytes, err
}
func (m *Map) lookup(key interface{}, valueOut sys.Pointer, flags MapLookupFlags) error {
keyPtr, err := m.marshalKey(key)
if err != nil {
return fmt.Errorf("can't marshal key: %w", err)
}
attr := sys.MapLookupElemAttr{
MapFd: m.fd.Uint(),
Key: keyPtr,
Value: valueOut,
Flags: uint64(flags),
}
if err = sys.MapLookupElem(&attr); err != nil {
return fmt.Errorf("lookup: %w", wrapMapError(err))
}
return nil
}
func (m *Map) lookupAndDelete(key, valueOut interface{}, flags MapLookupFlags) error {
valuePtr, valueBytes := makeBuffer(valueOut, m.fullValueSize)
keyPtr, err := m.marshalKey(key)
if err != nil {
return fmt.Errorf("can't marshal key: %w", err)
}
attr := sys.MapLookupAndDeleteElemAttr{
MapFd: m.fd.Uint(),
Key: keyPtr,
Value: valuePtr,
Flags: uint64(flags),
}
if err := sys.MapLookupAndDeleteElem(&attr); err != nil {
return fmt.Errorf("lookup and delete: %w", wrapMapError(err))
}
return m.unmarshalValue(valueOut, valueBytes)
}
// MapUpdateFlags controls the behaviour of the Map.Update call.
//
// The exact semantics depend on the specific MapType.
type MapUpdateFlags uint64
const (
// UpdateAny creates a new element or update an existing one.
UpdateAny MapUpdateFlags = iota
// UpdateNoExist creates a new element.
UpdateNoExist MapUpdateFlags = 1 << (iota - 1)
// UpdateExist updates an existing element.
UpdateExist
// UpdateLock updates elements under bpf_spin_lock.
UpdateLock
)
// Put replaces or creates a value in map.
//
// It is equivalent to calling Update with UpdateAny.
func (m *Map) Put(key, value interface{}) error {
return m.Update(key, value, UpdateAny)
}
// Update changes the value of a key.
func (m *Map) Update(key, value interface{}, flags MapUpdateFlags) error {
keyPtr, err := m.marshalKey(key)
if err != nil {
return fmt.Errorf("can't marshal key: %w", err)
}
valuePtr, err := m.marshalValue(value)
if err != nil {
return fmt.Errorf("can't marshal value: %w", err)
}
attr := sys.MapUpdateElemAttr{
MapFd: m.fd.Uint(),
Key: keyPtr,
Value: valuePtr,
Flags: uint64(flags),
}
if err = sys.MapUpdateElem(&attr); err != nil {
return fmt.Errorf("update: %w", wrapMapError(err))
}
return nil
}
// Delete removes a value.
//
// Returns ErrKeyNotExist if the key does not exist.
func (m *Map) Delete(key interface{}) error {
keyPtr, err := m.marshalKey(key)
if err != nil {
return fmt.Errorf("can't marshal key: %w", err)
}
attr := sys.MapDeleteElemAttr{
MapFd: m.fd.Uint(),
Key: keyPtr,
}
if err = sys.MapDeleteElem(&attr); err != nil {
return fmt.Errorf("delete: %w", wrapMapError(err))
}
return nil
}
// NextKey finds the key following an initial key.
//
// See NextKeyBytes for details.
//
// Returns ErrKeyNotExist if there is no next key.
func (m *Map) NextKey(key, nextKeyOut interface{}) error {
nextKeyPtr, nextKeyBytes := makeBuffer(nextKeyOut, int(m.keySize))
if err := m.nextKey(key, nextKeyPtr); err != nil {
return err
}
if err := m.unmarshalKey(nextKeyOut, nextKeyBytes); err != nil {
return fmt.Errorf("can't unmarshal next key: %w", err)
}
return nil
}
// NextKeyBytes returns the key following an initial key as a byte slice.
//
// Passing nil will return the first key.
//
// Use Iterate if you want to traverse all entries in the map.
//
// Returns nil if there are no more keys.
func (m *Map) NextKeyBytes(key interface{}) ([]byte, error) {
nextKey := make([]byte, m.keySize)
nextKeyPtr := sys.NewSlicePointer(nextKey)
err := m.nextKey(key, nextKeyPtr)
if errors.Is(err, ErrKeyNotExist) {
return nil, nil
}
return nextKey, err
}
func (m *Map) nextKey(key interface{}, nextKeyOut sys.Pointer) error {
var (
keyPtr sys.Pointer
err error
)
if key != nil {
keyPtr, err = m.marshalKey(key)
if err != nil {
return fmt.Errorf("can't marshal key: %w", err)
}
}
attr := sys.MapGetNextKeyAttr{
MapFd: m.fd.Uint(),
Key: keyPtr,
NextKey: nextKeyOut,
}
if err = sys.MapGetNextKey(&attr); err != nil {
// Kernels 4.4.131 and earlier return EFAULT instead of a pointer to the
// first map element when a nil key pointer is specified.
if key == nil && errors.Is(err, unix.EFAULT) {
var guessKey []byte
guessKey, err = m.guessNonExistentKey()
if err != nil {
return err
}
// Retry the syscall with a valid non-existing key.
attr.Key = sys.NewSlicePointer(guessKey)
if err = sys.MapGetNextKey(&attr); err == nil {
return nil
}
}
return fmt.Errorf("next key: %w", wrapMapError(err))
}
return nil
}
// guessNonExistentKey attempts to perform a map lookup that returns ENOENT.
// This is necessary on kernels before 4.4.132, since those don't support
// iterating maps from the start by providing an invalid key pointer.
func (m *Map) guessNonExistentKey() ([]byte, error) {
// Provide an invalid value pointer to prevent a copy on the kernel side.
valuePtr := sys.NewPointer(unsafe.Pointer(^uintptr(0)))
randKey := make([]byte, int(m.keySize))
for i := 0; i < 4; i++ {
switch i {
// For hash maps, the 0 key is less likely to be occupied. They're often
// used for storing data related to pointers, and their access pattern is
// generally scattered across the keyspace.
case 0:
// An all-0xff key is guaranteed to be out of bounds of any array, since
// those have a fixed key size of 4 bytes. The only corner case being
// arrays with 2^32 max entries, but those are prohibitively expensive
// in many environments.
case 1:
for r := range randKey {
randKey[r] = 0xff
}
// Inspired by BCC, 0x55 is an alternating binary pattern (0101), so
// is unlikely to be taken.
case 2:
for r := range randKey {
randKey[r] = 0x55
}
// Last ditch effort, generate a random key.
case 3:
rand.New(rand.NewSource(time.Now().UnixNano())).Read(randKey)
}
err := m.lookup(randKey, valuePtr, 0)
if errors.Is(err, ErrKeyNotExist) {
return randKey, nil
}
}
return nil, errors.New("couldn't find non-existing key")
}
// BatchLookup looks up many elements in a map at once.
//
// "keysOut" and "valuesOut" must be of type slice, a pointer
// to a slice or buffer will not work.
// "prevKey" is the key to start the batch lookup from, it will
// *not* be included in the results. Use nil to start at the first key.
//
// ErrKeyNotExist is returned when the batch lookup has reached
// the end of all possible results, even when partial results
// are returned. It should be used to evaluate when lookup is "done".
func (m *Map) BatchLookup(prevKey, nextKeyOut, keysOut, valuesOut interface{}, opts *BatchOptions) (int, error) {
return m.batchLookup(sys.BPF_MAP_LOOKUP_BATCH, prevKey, nextKeyOut, keysOut, valuesOut, opts)
}
// BatchLookupAndDelete looks up many elements in a map at once,
//
// It then deletes all those elements.
// "keysOut" and "valuesOut" must be of type slice, a pointer
// to a slice or buffer will not work.
// "prevKey" is the key to start the batch lookup from, it will
// *not* be included in the results. Use nil to start at the first key.
//
// ErrKeyNotExist is returned when the batch lookup has reached
// the end of all possible results, even when partial results
// are returned. It should be used to evaluate when lookup is "done".
func (m *Map) BatchLookupAndDelete(prevKey, nextKeyOut, keysOut, valuesOut interface{}, opts *BatchOptions) (int, error) {
return m.batchLookup(sys.BPF_MAP_LOOKUP_AND_DELETE_BATCH, prevKey, nextKeyOut, keysOut, valuesOut, opts)
}
func (m *Map) batchLookup(cmd sys.Cmd, startKey, nextKeyOut, keysOut, valuesOut interface{}, opts *BatchOptions) (int, error) {
if err := haveBatchAPI(); err != nil {
return 0, err
}
if m.typ.hasPerCPUValue() {
return 0, ErrNotSupported
}
keysValue := reflect.ValueOf(keysOut)
if keysValue.Kind() != reflect.Slice {
return 0, fmt.Errorf("keys must be a slice")
}
valuesValue := reflect.ValueOf(valuesOut)
if valuesValue.Kind() != reflect.Slice {
return 0, fmt.Errorf("valuesOut must be a slice")
}
count := keysValue.Len()
if count != valuesValue.Len() {
return 0, fmt.Errorf("keysOut and valuesOut must be the same length")
}
keyBuf := make([]byte, count*int(m.keySize))
keyPtr := sys.NewSlicePointer(keyBuf)
valueBuf := make([]byte, count*int(m.fullValueSize))
valuePtr := sys.NewSlicePointer(valueBuf)
nextPtr, nextBuf := makeBuffer(nextKeyOut, int(m.keySize))
attr := sys.MapLookupBatchAttr{
MapFd: m.fd.Uint(),
Keys: keyPtr,
Values: valuePtr,
Count: uint32(count),
OutBatch: nextPtr,
}
if opts != nil {
attr.ElemFlags = opts.ElemFlags
attr.Flags = opts.Flags
}
var err error
if startKey != nil {
attr.InBatch, err = marshalPtr(startKey, int(m.keySize))
if err != nil {
return 0, err
}
}
_, sysErr := sys.BPF(cmd, unsafe.Pointer(&attr), unsafe.Sizeof(attr))
sysErr = wrapMapError(sysErr)
if sysErr != nil && !errors.Is(sysErr, unix.ENOENT) {
return 0, sysErr
}
err = m.unmarshalKey(nextKeyOut, nextBuf)
if err != nil {
return 0, err
}
err = unmarshalBytes(keysOut, keyBuf)
if err != nil {
return 0, err
}
err = unmarshalBytes(valuesOut, valueBuf)
if err != nil {
return 0, err
}
return int(attr.Count), sysErr
}
// BatchUpdate updates the map with multiple keys and values
// simultaneously.
// "keys" and "values" must be of type slice, a pointer
// to a slice or buffer will not work.
func (m *Map) BatchUpdate(keys, values interface{}, opts *BatchOptions) (int, error) {
if err := haveBatchAPI(); err != nil {
return 0, err
}
if m.typ.hasPerCPUValue() {
return 0, ErrNotSupported
}
keysValue := reflect.ValueOf(keys)
if keysValue.Kind() != reflect.Slice {
return 0, fmt.Errorf("keys must be a slice")
}
valuesValue := reflect.ValueOf(values)
if valuesValue.Kind() != reflect.Slice {
return 0, fmt.Errorf("values must be a slice")
}
var (
count = keysValue.Len()
valuePtr sys.Pointer
err error
)
if count != valuesValue.Len() {
return 0, fmt.Errorf("keys and values must be the same length")
}
keyPtr, err := marshalPtr(keys, count*int(m.keySize))
if err != nil {
return 0, err
}
valuePtr, err = marshalPtr(values, count*int(m.valueSize))
if err != nil {
return 0, err
}
attr := sys.MapUpdateBatchAttr{
MapFd: m.fd.Uint(),
Keys: keyPtr,
Values: valuePtr,
Count: uint32(count),
}
if opts != nil {
attr.ElemFlags = opts.ElemFlags
attr.Flags = opts.Flags
}
err = sys.MapUpdateBatch(&attr)
if err != nil {
return int(attr.Count), fmt.Errorf("batch update: %w", wrapMapError(err))
}
return int(attr.Count), nil
}
// BatchDelete batch deletes entries in the map by keys.
// "keys" must be of type slice, a pointer to a slice or buffer will not work.
func (m *Map) BatchDelete(keys interface{}, opts *BatchOptions) (int, error) {
if err := haveBatchAPI(); err != nil {
return 0, err
}
if m.typ.hasPerCPUValue() {
return 0, ErrNotSupported
}
keysValue := reflect.ValueOf(keys)
if keysValue.Kind() != reflect.Slice {
return 0, fmt.Errorf("keys must be a slice")
}
count := keysValue.Len()
keyPtr, err := marshalPtr(keys, count*int(m.keySize))
if err != nil {
return 0, fmt.Errorf("cannot marshal keys: %v", err)
}
attr := sys.MapDeleteBatchAttr{
MapFd: m.fd.Uint(),
Keys: keyPtr,
Count: uint32(count),
}
if opts != nil {
attr.ElemFlags = opts.ElemFlags
attr.Flags = opts.Flags
}
if err = sys.MapDeleteBatch(&attr); err != nil {
return int(attr.Count), fmt.Errorf("batch delete: %w", wrapMapError(err))
}
return int(attr.Count), nil
}
// Iterate traverses a map.
//
// It's safe to create multiple iterators at the same time.
//
// It's not possible to guarantee that all keys in a map will be
// returned if there are concurrent modifications to the map.
func (m *Map) Iterate() *MapIterator {
return newMapIterator(m)
}
// Close the Map's underlying file descriptor, which could unload the
// Map from the kernel if it is not pinned or in use by a loaded Program.
func (m *Map) Close() error {
if m == nil {
// This makes it easier to clean up when iterating maps
// of maps / programs.
return nil
}
return m.fd.Close()
}
// FD gets the file descriptor of the Map.
//
// Calling this function is invalid after Close has been called.
func (m *Map) FD() int {
return m.fd.Int()
}
// Clone creates a duplicate of the Map.
//
// Closing the duplicate does not affect the original, and vice versa.
// Changes made to the map are reflected by both instances however.
// If the original map was pinned, the cloned map will not be pinned by default.
//
// Cloning a nil Map returns nil.
func (m *Map) Clone() (*Map, error) {
if m == nil {
return nil, nil
}
dup, err := m.fd.Dup()
if err != nil {
return nil, fmt.Errorf("can't clone map: %w", err)
}
return &Map{
m.name,
dup,
m.typ,
m.keySize,
m.valueSize,
m.maxEntries,
m.flags,
"",
m.fullValueSize,
}, nil
}
// Pin persists the map on the BPF virtual file system past the lifetime of
// the process that created it .
//
// Calling Pin on a previously pinned map will overwrite the path, except when
// the new path already exists. Re-pinning across filesystems is not supported.
// You can Clone a map to pin it to a different path.
//
// This requires bpffs to be mounted above fileName. See https://docs.cilium.io/en/k8s-doc/admin/#admin-mount-bpffs
func (m *Map) Pin(fileName string) error {
if err := internal.Pin(m.pinnedPath, fileName, m.fd); err != nil {
return err
}
m.pinnedPath = fileName
return nil
}
// Unpin removes the persisted state for the map from the BPF virtual filesystem.
//
// Failed calls to Unpin will not alter the state returned by IsPinned.
//
// Unpinning an unpinned Map returns nil.
func (m *Map) Unpin() error {
if err := internal.Unpin(m.pinnedPath); err != nil {
return err
}
m.pinnedPath = ""
return nil
}
// IsPinned returns true if the map has a non-empty pinned path.
func (m *Map) IsPinned() bool {
return m.pinnedPath != ""
}
// Freeze prevents a map to be modified from user space.
//
// It makes no changes to kernel-side restrictions.
func (m *Map) Freeze() error {
if err := haveMapMutabilityModifiers(); err != nil {
return fmt.Errorf("can't freeze map: %w", err)
}
attr := sys.MapFreezeAttr{
MapFd: m.fd.Uint(),
}
if err := sys.MapFreeze(&attr); err != nil {
return fmt.Errorf("can't freeze map: %w", err)
}
return nil
}
// finalize populates the Map according to the Contents specified
// in spec and freezes the Map if requested by spec.
func (m *Map) finalize(spec *MapSpec) error {
for _, kv := range spec.Contents {
if err := m.Put(kv.Key, kv.Value); err != nil {
return fmt.Errorf("putting value: key %v: %w", kv.Key, err)
}
}
if spec.Freeze {
if err := m.Freeze(); err != nil {
return fmt.Errorf("freezing map: %w", err)
}
}
return nil
}
func (m *Map) marshalKey(data interface{}) (sys.Pointer, error) {
if data == nil {
if m.keySize == 0 {
// Queues have a key length of zero, so passing nil here is valid.
return sys.NewPointer(nil), nil
}
return sys.Pointer{}, errors.New("can't use nil as key of map")
}
return marshalPtr(data, int(m.keySize))
}
func (m *Map) unmarshalKey(data interface{}, buf []byte) error {
if buf == nil {
// This is from a makeBuffer call, nothing do do here.
return nil
}
return unmarshalBytes(data, buf)
}
func (m *Map) marshalValue(data interface{}) (sys.Pointer, error) {
if m.typ.hasPerCPUValue() {
return marshalPerCPUValue(data, int(m.valueSize))
}
var (
buf []byte
err error
)
switch value := data.(type) {
case *Map:
if !m.typ.canStoreMap() {
return sys.Pointer{}, fmt.Errorf("can't store map in %s", m.typ)
}
buf, err = marshalMap(value, int(m.valueSize))
case *Program:
if !m.typ.canStoreProgram() {
return sys.Pointer{}, fmt.Errorf("can't store program in %s", m.typ)
}
buf, err = marshalProgram(value, int(m.valueSize))
default:
return marshalPtr(data, int(m.valueSize))
}
if err != nil {
return sys.Pointer{}, err
}
return sys.NewSlicePointer(buf), nil
}
func (m *Map) unmarshalValue(value interface{}, buf []byte) error {
if buf == nil {
// This is from a makeBuffer call, nothing do do here.
return nil
}
if m.typ.hasPerCPUValue() {
return unmarshalPerCPUValue(value, int(m.valueSize), buf)
}
switch value := value.(type) {
case **Map:
if !m.typ.canStoreMap() {
return fmt.Errorf("can't read a map from %s", m.typ)
}
other, err := unmarshalMap(buf)
if err != nil {
return err
}
// The caller might close the map externally, so ignore errors.
_ = (*value).Close()
*value = other
return nil
case *Map:
if !m.typ.canStoreMap() {
return fmt.Errorf("can't read a map from %s", m.typ)
}
return errors.New("require pointer to *Map")
case **Program:
if !m.typ.canStoreProgram() {
return fmt.Errorf("can't read a program from %s", m.typ)
}
other, err := unmarshalProgram(buf)
if err != nil {
return err
}
// The caller might close the program externally, so ignore errors.
_ = (*value).Close()
*value = other
return nil
case *Program:
if !m.typ.canStoreProgram() {
return fmt.Errorf("can't read a program from %s", m.typ)
}
return errors.New("require pointer to *Program")
}
return unmarshalBytes(value, buf)
}
// LoadPinnedMap loads a Map from a BPF file.
func LoadPinnedMap(fileName string, opts *LoadPinOptions) (*Map, error) {
fd, err := sys.ObjGet(&sys.ObjGetAttr{
Pathname: sys.NewStringPointer(fileName),
FileFlags: opts.Marshal(),
})
if err != nil {
return nil, err
}
m, err := newMapFromFD(fd)
if err == nil {
m.pinnedPath = fileName
}
return m, err
}
// unmarshalMap creates a map from a map ID encoded in host endianness.
func unmarshalMap(buf []byte) (*Map, error) {
if len(buf) != 4 {
return nil, errors.New("map id requires 4 byte value")
}
id := internal.NativeEndian.Uint32(buf)
return NewMapFromID(MapID(id))
}
// marshalMap marshals the fd of a map into a buffer in host endianness.
func marshalMap(m *Map, length int) ([]byte, error) {
if length != 4 {
return nil, fmt.Errorf("can't marshal map to %d bytes", length)
}
buf := make([]byte, 4)
internal.NativeEndian.PutUint32(buf, m.fd.Uint())
return buf, nil
}
// MapIterator iterates a Map.
//
// See Map.Iterate.
type MapIterator struct {
target *Map
prevKey interface{}
prevBytes []byte
count, maxEntries uint32
done bool
err error
}
func newMapIterator(target *Map) *MapIterator {
return &MapIterator{
target: target,
maxEntries: target.maxEntries,
prevBytes: make([]byte, target.keySize),
}
}
// Next decodes the next key and value.
//
// Iterating a hash map from which keys are being deleted is not
// safe. You may see the same key multiple times. Iteration may
// also abort with an error, see IsIterationAborted.
//
// Returns false if there are no more entries. You must check
// the result of Err afterwards.
//
// See Map.Get for further caveats around valueOut.
func (mi *MapIterator) Next(keyOut, valueOut interface{}) bool {
if mi.err != nil || mi.done {
return false
}
// For array-like maps NextKeyBytes returns nil only on after maxEntries
// iterations.
for mi.count <= mi.maxEntries {
var nextBytes []byte
nextBytes, mi.err = mi.target.NextKeyBytes(mi.prevKey)
if mi.err != nil {
return false
}
if nextBytes == nil {
mi.done = true
return false
}
// The user can get access to nextBytes since unmarshalBytes
// does not copy when unmarshaling into a []byte.
// Make a copy to prevent accidental corruption of
// iterator state.
copy(mi.prevBytes, nextBytes)
mi.prevKey = mi.prevBytes
mi.count++
mi.err = mi.target.Lookup(nextBytes, valueOut)
if errors.Is(mi.err, ErrKeyNotExist) {
// Even though the key should be valid, we couldn't look up
// its value. If we're iterating a hash map this is probably
// because a concurrent delete removed the value before we
// could get it. This means that the next call to NextKeyBytes
// is very likely to restart iteration.
// If we're iterating one of the fd maps like
// ProgramArray it means that a given slot doesn't have
// a valid fd associated. It's OK to continue to the next slot.
continue
}
if mi.err != nil {
return false
}
mi.err = mi.target.unmarshalKey(keyOut, nextBytes)
return mi.err == nil
}
mi.err = fmt.Errorf("%w", ErrIterationAborted)
return false
}
// Err returns any encountered error.
//
// The method must be called after Next returns nil.
//
// Returns ErrIterationAborted if it wasn't possible to do a full iteration.
func (mi *MapIterator) Err() error {
return mi.err
}
// MapGetNextID returns the ID of the next eBPF map.
//
// Returns ErrNotExist, if there is no next eBPF map.
func MapGetNextID(startID MapID) (MapID, error) {
attr := &sys.MapGetNextIdAttr{Id: uint32(startID)}
return MapID(attr.NextId), sys.MapGetNextId(attr)
}
// NewMapFromID returns the map for a given id.
//
// Returns ErrNotExist, if there is no eBPF map with the given id.
func NewMapFromID(id MapID) (*Map, error) {
fd, err := sys.MapGetFdById(&sys.MapGetFdByIdAttr{
Id: uint32(id),
})
if err != nil {
return nil, err
}
return newMapFromFD(fd)
}