mirror of
1
Fork 0
gotosocial/vendor/github.com/buckket/go-blurhash/encode.go

165 lines
4.7 KiB
Go

package blurhash
import (
"fmt"
"github.com/buckket/go-blurhash/base83"
"image"
"math"
"strings"
)
func init() {
initLinearTable(channelToLinear[:])
}
var channelToLinear [256]float64
func initLinearTable(table []float64) {
for i := range table {
channelToLinear[i] = sRGBToLinear(i)
}
}
// An InvalidParameterError occurs when an invalid argument is passed to either the Decode or Encode function.
type InvalidParameterError struct {
Value int
Parameter string
}
func (e InvalidParameterError) Error() string {
return fmt.Sprintf("blurhash: %sComponents (%d) must be element of [1-9]", e.Parameter, e.Value)
}
// An EncodingError represents an error that occurred during the encoding of the given value.
// This most likely means that your input image is invalid and can not be processed.
type EncodingError string
func (e EncodingError) Error() string {
return fmt.Sprintf("blurhash: %s", string(e))
}
// Encode calculates the Blurhash for an image using the given x and y component counts.
// The x and y components have to be between 1 and 9 respectively.
// The image must be of image.Image type.
func Encode(xComponents int, yComponents int, rgba image.Image) (string, error) {
if xComponents < 1 || xComponents > 9 {
return "", InvalidParameterError{xComponents, "x"}
}
if yComponents < 1 || yComponents > 9 {
return "", InvalidParameterError{yComponents, "y"}
}
var blurhash strings.Builder
blurhash.Grow(4 + 2*xComponents*yComponents)
// Size Flag
str, err := base83.Encode((xComponents-1)+(yComponents-1)*9, 1)
if err != nil {
return "", EncodingError("could not encode size flag")
}
blurhash.WriteString(str)
factors := make([]float64, yComponents*xComponents*3)
multiplyBasisFunction(rgba, factors, xComponents, yComponents)
var maximumValue float64
var quantisedMaximumValue int
var acCount = xComponents*yComponents - 1
if acCount > 0 {
var actualMaximumValue float64
for i := 0; i < acCount*3; i++ {
actualMaximumValue = math.Max(math.Abs(factors[i+3]), actualMaximumValue)
}
quantisedMaximumValue = int(math.Max(0, math.Min(82, math.Floor(actualMaximumValue*166-0.5))))
maximumValue = (float64(quantisedMaximumValue) + 1) / 166
} else {
maximumValue = 1
}
// Quantised max AC component
str, err = base83.Encode(quantisedMaximumValue, 1)
if err != nil {
return "", EncodingError("could not encode quantised max AC component")
}
blurhash.WriteString(str)
// DC value
str, err = base83.Encode(encodeDC(factors[0], factors[1], factors[2]), 4)
if err != nil {
return "", EncodingError("could not encode DC value")
}
blurhash.WriteString(str)
// AC values
for i := 0; i < acCount; i++ {
str, err = base83.Encode(encodeAC(factors[3+(i*3+0)], factors[3+(i*3+1)], factors[3+(i*3+2)], maximumValue), 2)
if err != nil {
return "", EncodingError("could not encode AC value")
}
blurhash.WriteString(str)
}
if blurhash.Len() != 4+2*xComponents*yComponents {
return "", EncodingError("hash does not match expected size")
}
return blurhash.String(), nil
}
func multiplyBasisFunction(rgba image.Image, factors []float64, xComponents int, yComponents int) {
height := rgba.Bounds().Max.Y
width := rgba.Bounds().Max.X
xvalues := make([][]float64, xComponents)
for xComponent := 0; xComponent < xComponents; xComponent++ {
xvalues[xComponent] = make([]float64, width)
for x := 0; x < width; x++ {
xvalues[xComponent][x] = math.Cos(math.Pi * float64(xComponent) * float64(x) / float64(width))
}
}
yvalues := make([][]float64, yComponents)
for yComponent := 0; yComponent < yComponents; yComponent++ {
yvalues[yComponent] = make([]float64, height)
for y := 0; y < height; y++ {
yvalues[yComponent][y] = math.Cos(math.Pi * float64(yComponent) * float64(y) / float64(height))
}
}
for y := 0; y < height; y++ {
for x := 0; x < width; x++ {
rt, gt, bt, _ := rgba.At(x, y).RGBA()
lr := channelToLinear[rt>>8]
lg := channelToLinear[gt>>8]
lb := channelToLinear[bt>>8]
for yc := 0; yc < yComponents; yc++ {
for xc := 0; xc < xComponents; xc++ {
scale := 1 / float64(width*height)
if xc != 0 || yc != 0 {
scale = 2 / float64(width*height)
}
basis := xvalues[xc][x] * yvalues[yc][y]
factors[0+xc*3+yc*3*xComponents] += lr * basis * scale
factors[1+xc*3+yc*3*xComponents] += lg * basis * scale
factors[2+xc*3+yc*3*xComponents] += lb * basis * scale
}
}
}
}
}
func encodeDC(r, g, b float64) int {
return (linearTosRGB(r) << 16) + (linearTosRGB(g) << 8) + linearTosRGB(b)
}
func encodeAC(r, g, b, maximumValue float64) int {
quant := func(f float64) int {
return int(math.Max(0, math.Min(18, math.Floor(signPow(f/maximumValue, 0.5)*9+9.5))))
}
return quant(r)*19*19 + quant(g)*19 + quant(b)
}